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1. Introduction

Currently, the data analysis system (ADAS, Brew-
ster 1996) of the Advanced Regional Prediction System
(ARPS, Xue et al. 2001; Xue et al. 1995) of CAPS em-
ploys the Bratseth (1986) interpolation scheme based
on successive corrections. The system has been suc-
cessfully used in research and operational meso- and
storm-scale simulations and forecasting, and is flexible
in dealing with data of varying spatial densities. It is
also computationally very efficient. A drawback of
such schemes, including the until-recent-years rather
popular optimal interpolation (Ol) schemes (Bratseth
scheme actually converges to Ol), is that observations
that differ from the analysis variables cannot be directly
analyzed. Examples include the precipitable water from
GPS, satellite radiances, radar radial velocity and re-
flectivity. Variational methods have the advantages of
being able to directly use the observations in a cost
function, and through the minimization of this function
the desired analysis variables that give a best fit to the
data, subjecting to background and other dynamical
constraints, can be obtained.

While four-dimensional variational (4ADVAR) data
assimilation is generally considered superior, a 3D
variational (3DVAR) assimilation system is the neces-
sary first, and also computationally more efficient, step
towards that goal. 3DVAR systems have been devel-
oped and operationally implemented for large-scale
NWP at several operational centers in recent years
(e.g., Parrish and Derber 1992; Courtier 1998) and pro-
gresses are also being made in developing systems for
mesoscale models (e.g., Wu et al, 2001).

In this paper, an incremental 3DVAR system de-
veloped recently for the ARPS is described. In the sys-
tem, the background error covariance matrix is mod-
eled using a recursive filter (Hayden and Purser 1995)
and the square root of the matrix is used for precondi-

tioning. Some initial numerical experiments have been
conducted based on this scheme and the results are
compared with that from the ADAS.

2. 3DVAR formulation

The basic cost function J, may be written as the
sum of two quadratic terms:
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The first term measures the departure of the analysis vector,
x from the background x°, which is weighted by the inverse
of the background error covariance matrix B™ ; the second
term measures the departure of the projection of analysis to
the observation space, H(x), from the observations them-
selves (y°), which is weighted by the inverse of the combined
observation and observation-operator error covariance ma-
trix, R™. In our scheme, the background field can be pro-
vided by a single sounding, a previous ARPS forecast, or an-
other operational forecast model. Observations currently
tested include: single-level surface data (including Oklahoma
Mesonet), multiple-level or upper-air observations (such as
rawinsondes and wind profilers), as well as Doppler radar
observations.

The analysis is to find model state X* for which J is ata
minimum. At the minimum, the derivative of J vanishes. The

Hessian of J(x) is:

0°J(xF B™* H'R™H. (2)
If D2J(x)is positive definite, then there is a unique X* that
minimizes the cost function J(x).

By defining v=+/B™ (x —x") =C™0x, 3)
and letting,
H(x) = H(X" +0x) = H(X") +H ox, 4)

we obtain a new representation of the incremental cost func-
tion:

Jie =%VT v+%(HCv —-d)"R™(HCv -d). (5)

The Hessian of J;¢ is

0°J,= ¥ CTH'R™HC, (6)
where | stands for the identity matrix. Comparing (6) with
(2), we see that the smallest eigenvalue of Hessian matrix
from (6) will be at least larger than one, so that the condition
number will not become infinite (Lakshimivaranhan, 1999).
This new Hessian matrix is much better conditioned than the
Hessian matrix of original problem (1).

The matrix C defined in (5) is realized as,

C=DF, (7)
where D is a diagonal matrix of standard deviation of the
background error. For simplicity, we assume that D has di-
agonal elements specified by the error estimation of numeri-



cal experimentations. F is a recursive filter (Hayden
and Purser 1995, Lorenc 1992) defined by

;—_Z\le ++(tl—3)in for i =1---,n (®)

i i+l i

where, X; is the initial value at grid point i, Y; is the
value after filtering for i=1 to n, Z; is the initial value
after one pass of the filter in each direction and O is
the filter coefficient. This is a first-order recursive fil-
ter, applied in both directions to ensure zero phase
change. Multi-pass filters are built up by repeated ap-
plication of (8). This filter is applied in all three direc-
tions.

We also assume that the observation errors are in-
dependent, that is, the observation error covariance ma-
trix R is also a diagonal matrix with constant diagonal
elements given by estimated error of each type of ob-
servation.
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Fig 1: The scaled cost function (J/J,) (solid line),

and scaled gradient norm (||g|/[g,| ) (dashed line) as
a function of the number of iterations.

3. Test results

As a preliminary example, the case of June 8, 1995
is used to test the 3DVAR scheme. It was a major day
during the 1995 Verification on Onset of Rotation in
Tornadoes Experiment (VORTEX 95) as several dam-
aging tornadoes were produced by storms in the eastern
Texas Panhandle. In the experiment, the first guesses
before minimization are zero.

Figure 1 shows that the cost function starts to level
off after 20 iterations in the control experiment. After
20 iterations, the curve of the cost function becomes es-
sentially horizontal, although the norm of the gradient
is still decreasing.

The quality of variational analysis can be ascer-
tained by comparing the analysis fields with the ADAS
analysis. In Fig 2, we show the contours of u-compo-
nent of wind field. Comparing the 3DVAR with the
ADAS, we can conclude that the quality of the analysis
is reasonable although more careful evaluations, espe-
cially numerical forecast experiments, are needed to
justify the result of analysis.

In another experiment, a single wind profile is used
in the middle of analysis domain. It is found that the

isotropic spread of the observation information when using a
single pass of the filter agrees with our expectation (figure
not shown). The influence area of this single observation de-
pends on the number of passes used and the correlation scale.
More detailed results will be presented at the conference.

4. Conclusion

In this paper, we described an incremental 3DVAR sys-
tem for the ARPS model. The system is preconditioned by
the background error covariance matrix, which is based on a
recursive filter. Numerical experiments show that a reason-
able reduction in the cost function is achieved in the minimi-
zation process and the quality of the analysis is reasonable.
The single-observation experiment shows that the recursive
filter performs adequately in spreading the observational in-
formation. New data types will be added to this assimilation
scheme and numerical forecast experiments will be per-
formed to further test the quality of this system in the future.
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Fig. 2. Comparison of 3DVAR analysis and
ADAS analysis of east-west velocity (u) field at
the surface, for 18 Z, June 8, 1995. (a) the
3DVAR analysis, (b) the ADAS analysis, (c) the
3DVAR analysis increment, (d) the ADAS analy-
sis increment, and (e) the analysis background.
Close to this time, tornadic supercell storms oc-
curred in the Texas Panhandle area.



