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1. INTRODUCTION

Many groups are experimenting with data assim-
ilation schemes for complex numerical weather and
oceanographic prediction models where background
forecast error covariances are estimated using an en-
semble. Much of this experimentation is based on
approach is known as the ensemble Kalman filter, or
“EnKF” (Evensen 1994, Evensen and van Leeuwen
1996, Houtekamer and Mitchell 1998, 2001, Hamill and
Snyder 2000, etc.). The EnKF uses a specifically con-
structed ensemble of parallel short-term forecasts and
data assimilation cycles. Statistics derived from the
short-term forecasts are used to estimate background
error covariances during the subsequent data assimila-
tion step. Ensemble members are updated to the new
observations in parallel data assimilation cycles.

Houtekamer and Mitchell (1998) noted that the
EnKF analysis could be improved by excluding observa-
tions greatly distant from the grid point being analyzed.
They concluded that this was because background er-
ror covariance estimates generated from a small ensem-
ble often produced spuriously large magnitude back-
ground error covariance estimates between greatly sep-
arated grid points; estimates from a larger ensemble
showed that the true covariances were generally small.
These large covariances resulted in unduly large correc-
tions to the analyses far from the observation location.
Hence, the analyses were more accurate when the ob-
servations were excluded than when they were included
and assimilated with degraded background error statis-
tics. Houtekamer and Mitchell (2000) have since ex-
perimented with filtering covariance estimates produced
by the ensemble using a “Schur product,” whereby the
ensemble-based covariance estimates are multiplied el-
ement by element with a distance-dependent correlation
function that varies from 1.0 at the observation location
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to 0.0 at some prespecified radial distance. They have
found that the analysis errors are substantially improved
when the Schur product with a correlation function is in-
corporated. The analyses also had other desirable prop-
erties such as improved smoothness.

This research continues the exploration into the
distance-dependent filtering of covariance estimates
generated by a finite ensemble. Our goal is to
understand why such filtering may be beneficial, how
much improvement may be expected from filtering, and
how this may change with the observational data density
and the size of the ensemble. An extended version of
this preprint has been accepted by Mon. Wea. Rev.,
(Hamill et al. 2001). Contact the author for a copy if
you are interested in details not described here.

2. SIMPLE PROPERTIES OF

COVARIANCE MATRICES FROM

RANDOM SAMPLES

Let us start by trying to understand one of the
most basic effects that an error in the specification of
covariances in the background error will have on data
assimilation. Namely, we consider how an error in the
covariance will affect the analysis at a grid point away
from the observation location. We consider the simplest
system possible, a 2-dimensional model state with a
single observation. We will use the nomenclature of
Bayesian statistics; for example, in this section, capital
letters will denote continuous random variables, and
lowercase letters the actual values. Assume we have a
random vector XT = (XT

1 ;XT
2 ) representing the unknown

true state of the model. We have a sample forecast
xb = (xb

1; xb
2), denoting the background, or “first guess”

forecast sample of the true state, with background error
covariance matrix Pb defined by

Pb =

�
�2

1 c12

c12 �2
2

�
: (1)

Thus, in the absence of new observations, we have a
prior probability distribution �(XT) � N (xb;Pb), where
N � (a;B) indicates the distribution is normal with
expected value a and variance/covariance B. Assume
a new observation then becomes available. Y is a
scalar random variable denoting the observation, and



the actual observation is y, taken at the location of the
first component of the state vector. Errors �0 for the
observation are defined by �0 � N (0; �2

0).
We seek the posterior probability distribution for

the analyzed state conditional on (updated to) the new
observation, �(XT = xjY = y) = Xa = (Xa

1;Xa
2). It can

be shown that Xa � N (xa;Pa), where xa = (xa
1; xa

2) and
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Thus, the analyzed values and the expected analysis error
variance obtained by updating the background are
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Now, suppose we have an inaccurate estimate P̂b of
the covariance matrix Pb, where variances are correctly
specified but the covariance has an error, or “noise”
�c � N (0; �12) :

P̂b =

�
�2

1 c12 + �c
c12 + �c �2

2

�
(4)

We seek to understand the effect on the quality of the
analysis for xa

2. If the error �c is uncorrelated with errors
in y, xb

1, and xb
2, it can be shown that

V ar(Xa
2) = �2

2 �
c2

12

�2
0 + �2

1

"
1�

��12

c12

�2
#
: (5)

Let us denote �12
c12

the “relative error” in the covariance,
a measure of noise relative to signal. Notice that when
the relative error is greater than one, the analysis of
xa

2 is typically degraded by assimilating the observation
y. Notice also that the amount of improvement or
degradation will be proportional to the square of the
covariance c12. That is, for a given relative error > 1.0,
the degradation will be worse for larger covariances.

Given that large relative errors in the magnitude of
background error covariances may degrade the analysis,
we shift focus to understand what can cause such errors
when they are estimated from an ensemble. We examine
this question through some simple experiments with 2�
2 sample covariance matrices. Again, assume we have
an ensemble of vector background values xb = (xb

1; xb
2)

sampled from XT. Here xb
1 represents the value at the

observation location, and xb
2 is the value at some distance

from the observation.

It can be shown that given the true covariance matrix
Pb with variances �2

1 = 1, �2
2 = �2, true correlation

� = Corr(XT
1 ;XT

2 ), (and hence true covariance c12 =
��1�2 = �� ), then the variance �12 of the error in the
calculation of the covariance from a sample ensemble of
xb is approximately

V ar(�c) = �12 '
1
n

(1 + �2)�2 (6)

for large enough sample sizes n.
How do errors change as the true correlation and

the ensemble size changes? Figure 1 shows the
corresponding relative error of the covariance, �12=c12.
Relative error increases greatly as � decreases and
as the ensemble size decreases. Since � typically
decreases with increasing distance from the observation,
in a numerical weather prediction model, the noise-to-
signal ratio would thus be expected to typically increase
with increasing distance from the observation (this is,
on average, the case; sometimes there may be large
magnitude true correlations over long distances. Section
4 provides some evidence that this is quite uncommon,
however.) We conducted two sets of tests, a set of
single observation experiments designed to illuminate
the characteristics of signal and noise in the ensemble,
and a test of analysis accuracy for different observational
networks, different sized ensembles, and different filter
characteristics. For both, a 90-day set of analyses were
computed, updated with new observations every 12 h.

3. DESIGN OF THE EXPERIMENT

a. Forecast Model

Results in the rest of the paper will be based on
a dry two-layer PE model, described in Zou et al.

Figure 1. (a) Relative errors (sample error variance divided by the
magnitude of the true covariance)as a function of correlation � and
ensemble size.



(1993). The model state vector consists of vorticity
and divergence spectra at two levels as well as Exner
function � at the lower surface and at an interface.
The model is spectral with a T31 triangular truncation.
There is a simple, wavenumber 2 terrain, but there are
no land/water interfaces. A fourth-order Runge-Kutta
scheme is used for the numerical integration, there is
r8 diffusion, and the model is forced by damping the
interface � toward an equilibrium state.

b. Observations

Two observational networks with approximately
uniform data density over the globe were tested, one with
46 and another with 126 raobs, with the raobs located
on a geodesic grid (see map with locations in Hamill et
al. 2001). We observed u and v components of the wind
at both model levels and Exner function � at the lower
surface and interface. Wind component error variances
were assumed to be (3:0 cos�)2 m2 s�2. Lower boundary
� variances are assumed to be 0.09 J2 kg�2 K�2, or about
1 hPa2 pressure error variance. Interface � variances
were set to 9.0 J2 kg�2 K�2, which corresponds to
about 1 K2 temperature error variance. These same
observation-error covariances were used both to generate
random observation errors and were those assumed by
the data assimilation scheme. Observations and new
analyses were generated every 12 h, followed by a 12-h
forecast with the PE model that served as background at
the next analysis time.

c. Ensemble Kalman �lter data assimilation system

The EnKF presupposes an ensemble of background
states are available to generate background covariance
estimates. We started with an ensemble of n analyses
at some time t0 generated in the manner described in
Hamill and Snyder (2000). These perturbed analyses
were generated by adding random spatially correlated
noise to the truth analysis. We then repeated the
following three-step process for each data assimilation
cycle: (1) Make n forecasts to the next analysis time,
here, 12 h hence. These forecasts will be used as
background fields for n parallel analyses. (2) Given the
already imperfect observations at this next analysis time
(hereafter called the “control” observations), generate
i = 1; : : : ; n independent sets of perturbed observations
yo
i by adding random noise to the control observations

yo. The noise is drawn from the same distributions as
the observation errors (see section 3b), and the noise
is constructed to ensure that the mean of the perturbed
observations is equal to the control observation. (3)
Perform n objective analyses, updating each of the
n background forecasts using the associated set of
perturbed observations. The analysis equation for the
ith member is

xa
i = xb

i + P̂bHT
h
HP̂bHT + R

i
�1�

yo
i �Hxb

i

�
: (7)

xb
i is the m-dimensional model state vector for the ith

member background forecast of ann-member ensemble,

comprised of gridded u and v wind components at the
two model levels as well as lower surface and interface�.
xa
i is the subsequently analyzed state for the ith member.

H (here assumed linear) is an operator that converts the
model state to the observation type and location. R is the
no�no measurement error covariance matrix. P̂b is now
an approximation of the background error covariances
generated from the collection of background forecasts.
In its most simple form in the EnKF, P̂b is approximated
by

P̂b =
1

n� 1

nX
i=1

�
xb
i � xb

��
xb
i � xb

�T
; (8)

where xb = 1
n

Pn

i=1 xb
i is the ensemble mean state.

Here, as in Evensen (1994) and Houtekamer and
Mitchell (1998, 2001), Pb is not computed explicitly
by itself but as the product PbHT, and as in Houtekamer
and Mitchell (2001), a covariance localization is applied.
Define

Hx
b

=
1
n

nX
i=1

Hxb
i ;

which represents the mean of ensemble states converted
to the observation variable’s type and location, respec-
tively. Then
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(9)
The operation �S � in (9) denotes a Schur product

(an element-by-element multiplication) of a correlation
matrix S with the covariance model generated by the
ensemble. The Schur product of matrices A and B is a
matrix C of the same dimension, where Cij = AijBij .
For sequential data assimilation, the function S depends
upon the observation location; it is a maximum of
1.0 at the observation location and typically decreases
montonically to zero at some finite distance from the
observation.

To define the correlation matrix S, we used a 5th-
order function of Gaspari and Cohn (1999), which is
similar in shape to the Gaussian function, but tapers to
zero at a finite distance. The controlling parameter is lc,
a correlation length scale for the function. See Hamill et
al. (2001) for more description.

4. SIGNAL AND NOISE ESTIMATES

FROM ENSEMBLES

Hamill et al. (2001) shows how a very large
ensemble (n=400 members) can be used to estimate
the characteristics of signals and noise in background
error covariances estimated from a much smaller (n=25)
ensemble. Generally, it is shown that the ratio of noise to
signal in the small ensemble gets larger the further from
the observation, i.e., as the true covariance progressively
decreases, the noise in the covariance estimate tends



Figure 2. 5th, 50th (solid line) and 95th percentiles of distribution of
noise/signal ratio as a function of distance from the observation.

to overwhelm the signal at finite distance from the
observation (around 4000 km, in this experiment) (Fig.
2). This is in accordance with the theory outlined in
section 2. See Hamill et al. (2001) for more details.

5. ANALYSIS ERRORS WITH

FILTERED COVARIANCES

We applied the 5th-order function in Gaspari and
Cohn (1999) as discussed in section 3c to an EnKF with
25, 100, and 400 members. Forecasts and analyses were
cycled for 90 days, with updates every 12 h. We shall
examine the analysis error characteristics of interface �
averaged over the last 60 days of the integration.

a. Analysis errors as function of �lter length scale

Figures 3 a-b present the time-average ensemble
mean error for the sparse network (46 observation
locations; Fig. 3a) and the denser network (126
observation locations; Fig. 3b). To the right of
the dots plotted for a given correlation length scale
in Fig. 3, filter divergence occurred for tested larger
length scales and the analyses were useless. Figure 3
suggests some interesting characteristics of the EnKF
coupled with the localization of covariances. First, as
expected, the analyses were significantly improved by
using more observations. Note that the optimal length
scale is a function of the size of the ensemble. Smaller
ensembles had a smaller optimal length scale than for
larger ensembles, indicating that noise in the covariance
estimates overwhelms signal at relatively short distances
from the observations when the ensemble size is small,
but for larger ensembles, noise doesn’t overwelm signal
until much further from the observation. This is similar
to a result Houtekamer and Mitchell (1998) found using
a cutoff radius to eliminate observations.

We also generated rank histograms (Hamill 2001
and references therein) as a way of measuring the
reliability of the ensemble. Ideally, a sample of forecast

Figure 3. (a) Time averaged ensemble mean error in interface � for
46-observation network as function of correlation length scale of the
filter. (b) As in (a), but for the 126-observation network.

values from the ensemble and the true state ought to be
able to be considered random samples from the same
probability distribution. If this is true, then when the
rank of the true state is compared to an n-member
ensemble sorted from lowest to highest, the rank of the
true state should be equally likely to occur in any of the
n + 1 possible ranks. A histogram of the rank of the
truth tallied over many points provides evidence of the
reliability of the ensemble. A U-shaped rank histogram
(excessive population at the lowest and highest ranks)
indicates insufficient spread or bias in the ensemble. An
excess population at the middle ranks indicates too much
spread.

Figures 4 a-b show rank histograms for the 46-
and 126-observation networks, respectively. Rank
histograms for the 100- and 400-member ensembles
were generated by taking a subset of 25 of the members,



Figure 4. (a) Rank histograms for the 46-observation network as a
function of the ensemble size and the filter correlation length. Where
rank histograms are not plotted, filter divergence occurred, (b) As in
(a), but for the 126-observation ensemble.

so that comparisons with the 25-member ensemble could
be facilitated. For the 25-member ensembles, at all
but the shortest tested length scale, rank histograms are
consistently overpopulated at the extreme ranks. This
result suggests that the small ensemble may not be
able to correctly specify error variances over the full
range of growing directions in the ensemble. For the
25- and 100-member ensembles, there is a trend toward
more population at the extreme ranks as the filter length
scale increases. This change from underpopulation to
overpopulation as filter length increases is a primarily
reflection of differing amounts of variance reduction
associated with different filter lengths. With strong
filtering (a short lc), only grid points very near the
observations are adjusted during the assimilation, and
at the rest, the original variance in the background is
preserved in the ensemble of analyses and propagated
forward to the next cycle. Thus, when filter length is
shorter than appropriate for a given sized ensemble, the
background covariances estimated from the ensemble
are reduced too much in magnitude, undercorrecting the
analysis far away from observation locations.

As the length scale of the filter increases, the more
the background error covariances estimated from the
ensemble are trusted; hence more and bigger corrections
to the analysis are possible far from the observation
location. If the covariances are very noisy, though, as

shown before, the corrections are inappropriate, and the
result is an overly adjusted, variance-deficient ensemble.
In the extreme, for very long correlation lengths, this can
induce filter divergence. This can be noticed in the the
rank histograms, which become increasingly U-shaped
as correlation length is increased.

6. CONCLUSIONS

Ensemble-based data assimilation approaches show
much potential for improving the quality of initial
conditions. The essence of ensemble approaches lies
in being able to effectively weight observations and
background forecasts using the ensemble to define the
background error statistics. We have shown here that
these statistics are subject to errors that can be improved
through the application of a distance-dependent filtering
algorithm.
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