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1. INTRODUCTION

Assume that in addition to a routine network of
observations, additional observations could be collected
sporadically for a moderate cost. These observations,
which might come from dropsondes, pilotless drones, or
driftsondes, would be taken at a location(s) chosen to
maximize the expected improvement in some aspect of
the ensuing analysis or the subsequent forecasts. This
general problem is known as targeting, or adaptive
observations.

We consider here the targeting problem on a some-
what theoretical level. Choosing optimal observation lo-
cations requires that we accurately predict the expected
reduction in uncertainty of the analysis or subsequent
forecast due to assimilating an observation. That influ-
ence is determined not only by the form and accuracy of
the observation and how errors grow during the forecast
(if we are interested in forecasts); it also depends on
the prior or “background” uncertainty, which is a func-
tion of the prior forecasts and observations. Berliner et
al. (1999) provide the analytical tools for understanding
how analysis and forecast uncertainty are related to ob-
servation and background uncertainty. This framework
differs from many of the existing approaches that do not
consider the effects of background uncertainty, such as
the singular vector or sensitivity techniques. As a con-
sequence, when using these techniques, the same target
location is selected regardless of how large or small the
background error is in a given location, and regardless of
how accurate or inaccurate the observation (Baker and
Daley 1999).

Our primary intent in this preprint is to demonstrate
a relatively simple, objective, and computationally
efficient algorithm for target selection based on and
consistent with Berliner et al. (1999). To wit, we shall
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use an ensemble of forecasts coupled to three different
data assimilation schemes, including two variants of
the ensemble Kalman filter (“EnKF;” Evensen 1994;
Houtekamer and Mitchell 1998). We demonstrate that
a target selection algorithm with an accurate model
of background error covariances provided by a large
ensemble is able to identify target locations where
analysis improvement is likely to be the largest. Its
straightforward and computationally efficient design
permits it to estimate the magnitude of the variance
reduction at each of a multitude of possible target
locations; the targeting algorithm then selects the
location where this variance is reduced by a maximum
expected amount.

We will focus on testing the algorithm to reduce
analysis, not forecast errors. Details on a similar
approach for reducing forecast errors as well as much
more detail on this scheme is available in a manuscript,
available from the author (Hamill and Snyder 2001,
“HS01”).

2. DESIGN OF THE EXPERIMENT

a. Model and Observations

The rest of the paper will use a quasigeostrophic
(QG) channel model as vehicle for testing algorithms
for targeting. The QG model was used in Hamill et
al. (2000) and HS01. The forecast model is assumed
perfect. A long reference integration of the QG model
provides the true state; the assimilation and forecast
experiments then use that same model together with
imperfect observations of the true state. Errors will be
measured in a total energy norm, defined in HS01.

A single fixed observational network is tested
here (Fig. 1), with a data void in the western
third of the domain. All observations are presumed
to be rawinsonde soundings, with u- and v-wind
components and � observed at each of the 8 model
levels. Observation errors are assumed to be normally
distributed, uncorrelated between vertical levels, and
uncorrelated in time.

b. Data assimilation schemes.



Figure 1. Location of fixed raobs for network with data void.

We will test the targeting scheme using three
different ensembles as input. One, an “inflated”
ensemble, uses an ensemble Kalman filter with inflation
of covariances to address the problem of filter divergence
(see discussion of filter divergence and possible remedies
in Hamill et al. 2001). Another “hybrid” ensemble
uses a blend of background error covariances estimated
from the ensemble and from a stationary, 3D-Var
model. The final, “perturbed observation” ensemble,
uses strictly stationary “3D-Var” background error
covariances. Details of the data assimilation are
provided in HS01.

3. STRATEGY FOR CHOOSING

TARGET LOCATIONS TO MINIMIZE

ANALYSIS ERROR VARIANCE

a. Background

Consider the analysis process within the standard
Kalman filter / estimation theory framework under
perfect model assumptions. Recall that the m-
dimensional analyzed state vector xa in an extended
Kalman filter is found by updating the background state
xb to a new set of new observations yo, weighted by the
Kalman gain matrix K:

xa = xb + K
�

yo
�Hxb

�
: (1)

Observations have unbiased and normally distributed
errors, defined by

yo = Hxt + �; � � N (0;R) (2)

and H is an operator converting the model state to the
observation locations and types. K is defined by

K = P̂bHT
�

HP̂bHT + R
�
�1
: (3)

P̂b is an estimate of the true background error covariance
matrix Pb. When coupled together with a forecast
model and a method for propagating background error
covariances, equations (1)-(3) provide a general analysis

system. Assuming that the observation and background

errors are uncorrelated, i.e.,
D
�
�

xb
� xt

�TE
= 0: and

substituting the definition of K from (3), the expected
analysis error variance is

Pa = Pb
�KHPb

�

h
KHPb

iT
+ K

�
HPbHT + R

�
KT

(4)
If the background error covariance estimate is perfect,
P̂b = Pb, then (4) simplifies to the more familiar

Pa =
�

I�KH
�

P̂b = P̂b
� P̂bHT

�
HP̂bHT + R

�
�1

HP̂b;

(5)
where I is the m �m identity matrix. (4) and (5) thus
provide us with a framework for estimating analysis error
variances for a given H in the case of imperfect and
perfect background error statistics, respectively.

Suppose we want to find the observation location
(i.e., the operator H) that minimizes the expected
analysis error variance. Assume hereafter that a
relatively large ensemble is available and that this
ensemble is constructed in a manner so that P̂b can be
estimated reasonably from the ensemble, P̂b

' Pb. (5)
then can be used to evaluate the expected error variance
reduction from assimilating that observation prior to
assimilating the actual observation. The second term
in (5) denotes the expected reduction in error covariance
due to assimilating the new observations. This then
suggests an algorithm for targeting. Loop through all
the potential observation locations that could potentially
be targeted. Build the operator H for a location, and

evaluateTr
h
P̂bHT

�
HP̂bHT +R

�
�1

HP̂b
i

at this location

(that is, the sum of the variance reduction). Proceed
to the next location. After the trace is determined at
all locations, target the observation location (or more
specifically, the H) where the trace is largest.

Two points are worth emphasizing. First, suppose
we have a very imperfect model of background error
covariances, perhaps as are used in 3D-Var. Then (4)
should be used instead of (5), and estimation of the
variance reduction using (4) still requires knowledge
of the true statistics, as can be seen by the terms
involving Pb in (4). Second, it is statistically valid in the
extended Kalman filter (slightly less so in the EnKF) to
assimilate observations sequentially if background error
covariances are updated (Anderson and Moore 1979).
The analysis error covariance estimate after assimilation
of the first observation thus is used as background error
covariance for the assimilation of the second observation,
and so on.

b. Making the targeting algorithm computationally
e�cient

For brevity, we will not provide details here. The
reader is referred to a full description of the algorithm
in HS01. The major simplification is to transform



the problem to work in the subspace spanned by the
eigenvectors of the background error covariance matrix
estimated from the ensemble.

4. PERFORMANCE OF THE

ENSEMBLE DATA ASSIMILATION

METHODS.

Before demonstrating the target selection method,
we briefly note the general performance of the three
data assimilation methods using the observations at the
fixed network of rawinsondes in Fig. 1. For each of
the three assimilation methods, a 90-day cycle of short-
range forecasts and analyses were generated here, with
an updated analysis generated every 12 hours.

The analysis errors for the three ensembles are
quite different; the ensemble mean error for the
inflated, hybrid, and perturbed observation ensembles
averaged over the 90-day period are 1.07, 1.34, and
8.15 ms�1, highlighting the dramatically improved
accuracy achieved by using a flow-dependent model
of covariances in the EnKF (though the relative
improvement may be misleading of the results in real-
world weather prediction, since these experiments are
conducted with a relatively simple model in a perfect-
model framework).

5. TARGETED OBSERVATION

RESULTS.

a. Targeting with full algorithm

We now test the scheme that selects the target
location which will maximize the expected reduction
in analysis error variance (eq. 5). The targeting results
shown here are primarily based on a subset of 20 of
the times in this series, starting ten days into the analysis
cycle and every 4 days thereafter. The analyses produced
by the assimilation of the fixed network of raobs are used
as the background states for the targeting tests performed
here. This is a justifiable assumption to make if the
observations are assimilated sequentially.

To evaluate the errors of the targeting algorithm,
we note that standard statistical result that for a random
sample of the vector xa with sample mean xa and true
state xt

D
(xa
� xt)(xa

� xt)T
E

=
D

(xa
� xt)(xa

� xt)T
E

+
D

(xa
� xa)(xa

� xa)T
E (6)

The analysis error variance in (6) is composed of
two terms, the mean squared error and the sample
variance, respectively. It can be shown that these if
the true state and the analyzed states can be considered
random samples from the same probability distribution,
then the two terms should be equal in expected value.

Ensembles from each of the three data assimilation
systems were used for target selection under the

assumption that the ensemble could provide a perfect
model of the covariances, i.e., (5) could be used instead
of (4) to assess the impact if an EnKF were used for
the data assimilation. The computationally efficient
targeting algorithm was used to compute Tr(KHP̂b) for
each horizontal grid point in the domain for each of the
twenty case days. Figure 2 provides maps of the patterns
of expected fractional reduction in analysis error for one
of the case days using the inflated ensemble. Note that
a synthetic observation was actually assimilated, with
concomitant dramatic reductions in analysis variance,
as illustrated in panel (c) of Fig. 2. To statistically
assess the improvement, for each of the 20 case days, the
optimal target location was determined for the inflated,

Figure 2. Expected fractional reduction in analysis sample variance
from application of targeting algorithm on Day 14 of the 90-
day integration of the inflated ensemble assimilation scheme. (a)
True geopotential height (solid) at model level 8 and �T (potential
temperature on top lid; dashed). (b) Expected fractional reduction
in analysis sample variance mapped for each potential observation
location in the domain. Dots indicate locations of fixed network
of observations previously assimilated. Star indicates location of
maximum expected reduction (the target location). Contours at
2 percent and every 4 percent thereafter. (c) As in (b), but the
improvement after the first targeted observation has been assimilated.



hybrid, and perturbed observation ensemble using (5).
Because the accuracy of the subsequent analysis may
depend upon the actual errors of the observation, for
each case day we generated 5 independent realizations
of the control observations by adding errors to the true
state, with the errors consistent with R. Each observation
was then separately assimilated using the same set of
background forecasts.

Figs. 3 (a)-(c) plots expected fractional reduction
in analysis error variance vs. fractional reduction of
ensemble mean error variance for the inflated, hybrid,
and perturbed observation ensembles, respectively. The
expected reduction in variance and the actual reduction
in ensemble mean error are roughly consistent for
the inflated and hybrid ensembles; generally, larger
expected reductions in the ensemble mean error are
associated with larger expected reductions in analysis
variance. However, the actual reduction for the perturbed
observation ensemble is much less than predicted. This
is a consequence of the actual data assimilation being
performed with 3D-Var while the targeting algorithm
assumes that the assimilation is performed with an EnKF.
Now, suppose that the ensemble really does provide an
accurate model of Pb, but the much less accurate 3D-
Var statistics are to be used for the data assimilation.
Then we can evaluate the improvement from a targeted
observation based on equation (4) instead of (5); here,
we compute the trace of (5) assuming P̂b is the stationary,
3D-Var covariance model and Pb is the covariance
estimate from the perturbed observation ensemble. Fig.
3 (d) shows the reduction under these assumptions.

b. Improvement from targeted vs. �xed observa-
tions.

We now attempt to provide an estimate of the benefit
of assimilating a supplemental targeted observation
relative to assimilating a fixed observation in the middle
of the void. We test this in two manners; first, we
compare the analysis error reduction when either a fixed
or targeted observation is intermittently assimilated.
Next we consider the case if a targeted or new fixed
observation is available at every data assimilation cycle.

Using the inflated ensemble and the set of 20 times
used previously, we applied the targeting algorithm. The
fractional reduction in the ensemble mean analysis error
(the first term in (6)) was computed and then compared it
to the fractional reduction that would be achieved with a
fixed supplemental raob profile at the grid point (30,33),
in the middle of the void. A scatterplot of the reduction
is shown in Fig. 4. There is a dramatic improvement
from using the targeted observation relative to the fixed
observation. The mean improvement is over 20 percent
for the targeted observation, approximately 4.5 percent
for the fixed. The targeted observation improved the
analysis in 19 of 20 cases vs. only 15 of 20 for the fixed.

We also performed an experiment where one
observation profile in the middle of the data-rich region
was removed (the observation at x=80, y=45 in Fig. 1),
and either a new fixed observation at (30,33) or a targeted

Figure 3. (a) Actual fractional reduction in ensemble mean variance
c vs expected fractional reduction in analysis error variance b for
optimal target locations from inflated ensemble. Five independent
control observations tested for each of the 20 case days. (b) As in (a),
but for hybrid ensemble, and (c) As in (a), but for perturbed observation
ensemble. (d) As in (c), but where eq. (4) is used instead of (5) to
predict expected improvement.



observation was assimilated during every cycle. The
relative improvement now is not nearly as dramatic (Fig.
5). There are substantial reductions in the ensemble
mean analysis error from inserting a fixed observation in
the middle of the void (compared to the ensemble mean
error of 1.07 from standard network). With a targeted
observation, there is further improvement, but not to the
extent suggested from the experiments where a targeted
observation was introduced intermittently. There may be
a number of factors which limit the improvement with
cycled targeted observations. First, relatively quickly,
the targeted observations tamp down the background
variance in the data void. The primary benefit of
targeted observations occurs when the backgrounderrors
are quite large; then the observation has a great
impact. When a targeted observation is continually
assimilated, it reduces the maximum background errors
substantially, and errors are not likely to grow back
to their original magnitude in the 12 h to the next
assimilation cycle. Thus, in some sense a targeted
observation can make subsequent targeted observations
less neccessary. Another possibility is that features with
high errors eventually flow near enough by the fixed
observation in the middle of the void to be effectively
corrected using the EnKF covariances.

6. CONCLUSIONS.

We demonstrate that use of an ensemble Kalman
filter, which can improve the accuracy of analyses
by providing an accurate, flow-dependent estimate of
background error covariances, also may be used for
adaptive observations. Improvements are estimated
in a manner that is fully consistent with the optimal
estimation theory underlying modern data assimilation.
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Figure 4. Improvement in ensemble mean analysis error when
assimilating targeted vs fixed observations on each of 20 case days.

Figure 5. Time series of ensemble mean analysis errors when replacing
observation profile at (80,45) in the data assimilation cycle with either
a fixed profile at (30,33) or a targeted observation.


