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1.  INTRODUCTION 
 
Observations from the standard global observing 
network, such as weather balloons, satellite 
observations, and surface reports, are incorporated 
into forecast models through data assimilation.  
Data assimilation combines information in 
observations with information in a first guess field to 
produce a new analysis. The first guess field is 
usually the forecast from a numerical weather 
prediction model valid at the time the observations 
are taken.  Data assimilation blends the 
observations with the first guess field using 
estimation theory, such as maximal likelihood 
estimation and minimum variance estimation (Daley 
1997). To use estimation theory for data 
assimilation, error statistics for the observation error 
and the first guess error are required.  These error 
statistics are used to minimize the error variance of 
the new analysis and thus provide the best possible 
approximation of the state of the atmosphere.  
 
Error statistics for observations are based on the 
precision of the instrument, and are provided by the 
manufacturer.  There are also error statistics for the 
error of representation, an error associated with 
how one piece of data may not accurately represent 
the air mass it is located in.  An example is a 
weather balloon that ascends through a 
thunderstorm while the surrounding air is storm 
free.  The observed temperature and moisture 
vertical profile is not indicative of the adjacent 
environment, as the scale of the feature observed is 
not the scale of the region being represented by the 
weather balloon.  Finally, there are the error 
statistics associated with the first guess field.   
  
The error statistics for the first guess field currently 
used in most operational centers parameterized 
from a long time series of previous forecasts, and 
are generally spatially homogeneous and 
temporally invariant (Parrish and Derber, 1992).  
These fixed statistics cannot account for the 
differences between atmospheric conditions.  For 
example, the error statistics near a cold front are 
likely to be very different to those in the center of a 
high-pressure system.  To produce the analysis 
with the analysis with the smallest error variance, 
the optimal error statistics are needed. Given the 
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shortcomings of the error statistics currently used in 
many operational centers, better-suited error 
statistics are proposed.  The focus of this research 
is to use ensembles to generate error statistics, and 
then try to determine which ensemble generation 
method produces the best error statistics.  
 
An approach to generate these error statistics is a 
hybrid ensemble transform Kalman filter / 3D-Var 
data assimilation scheme.  This scheme was 
introduced in Hamill and Snyder (2001) and applied 
in Bishop et al (2001).  The hybrid approach makes 
a move towards flow dependent error statistics 
while not abandoning the robust conventional 
approaches used most often in operations.  
 
2.  THE HYBRID ENSEMBLE TRANSFORM 
KALMAN FILTER / 3D-VARIATIONAL DATA 
ASSIMILATION SCHEME 
 
The Ensemble Transform Kalman Filter (ET KF)  
(Bishop et al., 2001) is a method of blending 
observations and a first guess field into a model 
analysis using an ensemble-based estimate of the 
error statistics.  The Kalman Filter (Kalman and 
Bucy, 1961) is the optimal means of spreading out 
information to a model.  The basic equation for the 
Kalman gain matrix, K(tf,ti) is:  
  
            K(tf,ti) = Pf(tf,ti)H

T (HPf(ti,ti)H
T+R)-1 

  
Where Pf(tf,ti) is the prediction error covariance 
matrix correlating errors at time tf with errors at time 
ti, R the observation error covariance matrix, and H 
a matrix that interpolates from observation space to 
model space given observations.  The time ti is the 
time that the observations are taken, the time tf 
when the time the prediction is valid at.  The 
Kalman filter is the optimal method of combining a 
first guess field with observations given that P(tf,ti) 
and R are known exactly. R is a diagonal matrix 
with values along the diagonal equal to the variance 
of the observation error, which is prescribed.   The 
focus of the hybrid scheme is the generation of the 
error statistics associated with the first guess field, 
Pf(ti,ti). 
 
Using a standard 3D-var approach, the prediction 
error covariance matrix is approximated using a 
parameterization.  This covariance matrix is 
denoted as B.  This matrix is invariant, 
homogeneous, and generally based on some sort 
of climatology.  For this study, an approach similar 
to that in Parrish and Derber (1991) was used.  To 
improve upon these error statistics, a flow 



dependent covariance matrix is produced by taking 
the outer product of ensemble members.  This 
matrix is named Ff(ti,ti), and Ff(ti,ti) = XiXi

T, where 
the “f“ subscript denotes that the ensemble 
perturbations and the error statistics are valid at the 
forecast time. 
 
For the hybrid ensemble Kalman filter / 3D-Var 
scheme, the prediction error covariance matrix is 
set equal to a combination of both climatological 
and flow dependent covariances: 
 
Pf(ti,ti

� � �
Ff(ti,ti)+ (1-

� �
B   (2) 

 
The main challenge with the Kalman filter is the 
inversion of the matrix HPf(ti,ti)H

T+R.  Using the 
ensemble based covariances, this inversion is not 
as computationally expensive, as the rank of 
HPf(ti,ti)H

T+R is no larger than the number of 
ensemble perturbations, whereas the full 
HPf(ti,ti)H

T+R has a rank equal to the number of 
observations.  For a global analysis scheme, this 
can be quite large.  For the 3D-Var part of the 
hybrid scheme, the inverse is calculated once, and 
stored on disk.  For the inverse of the ensemble 
based covariance matrix, calculations are 
performed for every analysis cycle.  Implicit in this 
inversion is that the ensemble perturbations are 
orthogonal to each other, such that the matrix is not 
rank deficient. 
 
An application of the hybrid ensemble transform 
Kalman filter / 3D-var scheme was done on a quasi-
geostrophic model in Hamill and Snyder (2000).  In 
their study, the method of generating the ensemble 
was to have separate analysis cycles for each 
ensemble member.  This approach, referred to as 
"perturbed observations" did produce decent 
ensemble perturbations, but was costly, in that a 
separate analysis had to be produced for each 
ensemble member. 
 
3.  TYPES OF MODEL ERRORS 
 
For the experiment, the same barotropic vorticity 
model used to generate the truth, and hence, the 
“observations”, was used as the forecast model.   
This simple model has only the effect of beta and a 
relaxation scheme as forcings. To show the ability 
of the data assimilation schemes to deal with 
different situations, there were three different 
approaches to the truth run.  The first option was to 
have the model and the truth run be the same 
model, same resolution, and same vorticity field the 
relaxation scheme nudges the model towards.  In 
this case, it is expected that after repeated 
sampling of the model domain, that the errors in the 
first guess field will diminish to near zero.   
 
The second option was to have the vorticity 
relaxation scheme of the model relax to a different 
field than was relaxed to in the truth run.  This was 

done by having the model relax to its initial vorticity 
value along its leftmost gridpoint for each latitude.  
The truth run relaxed to the initial conditions.  No 
term representing the model error was included in 
the Kalman Filter equations, as the only two 
covariance matrices were the prediction error 
covariance matrix, and an observation error 
covariance matrix.  The observation error 
covariance matrix consisted of a diagonal matrix 
with the values along the diagonal equal to the 
variance associated with the random values (mean 
0, normal distribution) added to values from the 
truth run when an observation was taken. 
 
The third option was to run the truth at a higher 
resolution than the model was run at.  This was 
accomplished by running the truth at 100km, while 
the model itself was run at 200km.  The third was to 
run the truth at the same resolution as the model, 
but to have the vorticity relaxation different between 
the two runs.  In this way, the forcing of the model 
was different to the forcing of the truth, creating a 
model error.   
 
4.  ENSEMBLE GENERATION SCHEMES IN THIS 
STUDY 
 
Perturbed Observations  
Developed in Houtekamer and Derome (1995), this 
approach uses 17 independent model runs, rather 
than one control run and 16 perturbations.  Each 
model run is treated as a first guess, and has it's 
own analysis increments made.  Error covariances 
are computed using the 16 ensemble members 
other than the first guess.  To represent observation 
error uncertainty in the ensemble, the innovation 
vector (d-Hx(ti)) has additional random errors 
added to it.  These errors are in accordance with 
the values in the error covariance matrix, R.  After 
the full collection of ensemble members has a new 
analysis, the control run is set to the mean of the 17 
analysis fields. 
 
With only difference in the observation error 
between the ensemble members, the members 
would drift to resembling each other at the analysis 
cycles continued.  To maintain ensemble spread, a 
rescaling of the ensemble perturbations is done 
using a maximal likelihood estimation theory 
developed in Dee (1995).  In this approach, it is 
expected that the square of the projection of the 
innovation vector (d-Hx(ti)) onto the eigenvectors of 
(HP(ti,ti)H

T+R)-1 will be equal to the spread of the 
matrix (HP(ti,ti)H

T+R)-1  A rescaling parameter is 
calculated such that the sum of the eigenvectors of 
HP(ti,ti)H, when multiplied by it, are equal to the 
sum of the squared projected innovations minus the 
eigenvectors of R.  These rescaled perturbations 
are then added back onto the ensemble mean to 
generate the 17 different first guess fields.  From 
there, the analyses for each member are produced. 
 



Breeding Method  
An attempt to reproduce the approach of Toth and 
Kalnay (1993), the 24 hour old ensemble of 
perturbations generated from the "random sample 
B" approach (explained later) are rescaled such 
that the sum of the squares of the singular values of 
the perturbations is equal to the sum of the squares 
of the climatological B matrix. These rescaled 
perturbations are then used as the initial conditions 
for an ensemble run.   
 
Optimal Perturbations  
An attempt to simulate the singular vector 
perturbations of Buizza and Palmer (1995).  A 256-
member ensemble is generated, using the top 256 
directions of the climatological B matrix.  Only the 
top 256 directions were used because these 
directions contained about 99 percent of the total 
variance in B, at one-quarter the computational cost 
to integrate all the eigenvectors of the B matrix.  In 
essence, this approach attempts to propagate the 
entire phase space of the model forward in time.  
By integrating all (important) directions forward in 
time, the propagator matrix L, is constructed 
explicitly such that x(t0) = Lx(ti), where x(t0) is the 
initial conditions from a previous analysis, x(ti) is the 
model first guess field at the time an increment is to 
be made.  At the time the ensemble is used to 
make an increment, a singular vector 
decomposition is performed to find the top 16 
directions.  These are then used as the 16 
perturbations for producing the error statistics of the 
first guess field.  
 
Recycled Fa 
In this technique, the ET KF is used to calculate the 
analysis error covariance matrix, Fa(ti,ti), for each 
day.  This matrix is then broken down into its 
eigenvectors and eigenvalues.  Since Fa(ti,ti) was 
formed from a reduction of Ff(ti,ti), it is of the same 
rank as the number of ensemble members, hence, 
there are only 16 eigenvectors of this Fa(ti,ti) matrix 
(as opposed to the climatological Fa(ti,ti), which has 
the full 1024).  These eigenvectors, multiplied by 
the square root of their eigenvalues, is used as  
perturbations to form the initial conditions for the 
ensemble members.  
 
Top Directions of Parrish/Derber B 
Using the Parrish/Derber derived covariance matrix, 
a singular value decomposition of B is performed, 
breaking the B down into 1024 singular vectors and 
1024 singular values.  From this, the top 16 
directions are used, with each direction being 
multiplied by the square root of its singular value to 
form the 16 ensemble perturbations.  Thus, the 
same set of perturbations is used every day. 
 
With this ensemble generation technique, as well 
as all other schemes discussed in this section, a 
rescaling of the ensemble perturbations is done.  
The approach is similar to the approach for the 

perturbed observations, except the rescaling factor 
is applied to the next ensemble generation, rather 
than to the perturbations themselves.   
 
Top Directions of Parrish/Derber Pa 
Using the equations developed for the ET KF, the 
climateological analysis error covariance matrix, 
Pa(ti,ti), is calculated using the equation Pa(ti,ti) = 
BHT(HBHT+R)-1HB.  As with the climateological B 
Matrix, a singular vector decomposition of Pa(ti,ti) is 
performed, and again the top 16 directions of the 
Pa(ti,ti) matrix are multiplied by the square root of 
their singular values to form the ensemble 
perturbations. The H matrix used in this calculation 
is the same 144-observation site as was used in the 
generation of the B matrix. 
 
Random Sample Parrish/Derber B 
This technique uses a random sample of the 
climatological prediction error covariance matrix 
obtained using a method similar to that of Parrish 
and Derber (1991).  A vector of random numbers, 
normally distributed (mean 0, standard deviation 1) 
are multiplied (element by element) to the singular 
values of the top 256 directions of B.  The reason 
for using only the top 256 directions of B, as 
opposed to all 1024, is that the top 256 directions 
account for 99.8 per cent of the variance in B, so to 
include more simply wastes computer time.   In the 
same way as when the top 16 eigenvectors of the B 
matrix were used, the daily rescaling of the initial 
perturbations is done to maintain an ensemble 
spread of a magnitude approximately the expected 
error of the first guess field. 
   
Random Sample Parrish/Derber Pa 
Similar to the random sample of singular vectors of 
B, except the singular values and singular vectors 
of the climatological Pa(ti,ti) matrix are used.   These 
structures are smaller scale than those produced 
from the B matrix, and are concentrated on the right 
(low observation density) side of the domain. 
 
Gridpoint Perturbations  
A Monte Carlo approach where random grid point 
vorticity perturbations are added to the first guess 
field.  The random numbers come from a uniform 
distribution with mean zero, and maximum 
amplitude such that the sum of the squares of the 
perturbations was equal to the sum of the squares 
of the rescaled singular values of the top 16 
directions of the climatological B matrix.   
 
5.  RESULTS  
 
Increments were made using the hybrid ensemble 
Kalman filter / 3D-var data assimilation scheme, 
with an alpha value of 0.6, and with a 72 
observation standard network.  Results are the 
average for the first 25 days of the 99 day run, 
when the flow is the “least climatological”, and the 
ensembles provide the greatest improvement.  



These results show the optimal perturbations 
method performs the best when the model error is 
the relaxation error, and the perturbed observations 
method performs the best when the resolution 
model error is present.  However, several schemes 
perform with a similar skill, and are far less 
expensive to produce.  For the resolution error 
case, with the exception of the grid point noise 
perturbations, that all schemes using a 16 member 
ensemble provide at least a 20 percent reduction of 
forecast errors, whereas pure 3D-var provides less 
than a 20 percent improvement on average.     
 
Given that the perturbed observations approach 
and the optimal perturbations approach take a great 
deal of computational effort to produce, it was 
hoped that they would provide far better analyses 
and forecasts.  However, they are not much better 
than the very simple leading eigenvectors of the 
climateological B matrix.  Perhaps a better use of 
computer power would be to form more ensemble 
members via this relatively cheap process.  The 
idea being to attack the problem with bulk rather 
than precision. 
 
 

The average daily percent reduction in global 
enstrophy 24 hour forecast error using a hybrid 

3D-Var/ET KF data assimilation scheme 
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Scores for 64 member ensembles constructed 
using the random sample of the climateological B 
matrix, the random sample of the climateological Pa 
matrix, the grid point perturbations, and the 
breeding method show that the breeding method 
and the top directions of the parameterized B-
matrix have average daily improvements of about 
30 percent for the relaxation error run.  For the 
resolution error case, the top directions of 
climatological Pa matrix and the breeding method 
have better than 30 percent reduction in error.  For 
each model error regime, these 64 member 
ensembles have greater error reductions than any 
of the methods used with only 16 ensemble 
members.  Given the time that it took to build the 
optimal perturbations, or the separate analyses 
required in the perturbed observations approach, 
for this experiment, that time was better spent 
making more ensemble members via a simpler 
technique. 
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