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1.  INTRODUCTION     
 
Operational meteorological centers around the world are 
either implementing or developing advanced four-
dimensional data assimilation systems. With respect to 
the present operational three-dimensional variational 
(3DVAR) data assimilation algorithms, the advanced 
four-dimensional systems have several advantages.  
First, the observations are assimilated at the correct 
observation times, rather than being time-binned in the 
intermittent 3DVAR systems.  Second, it is possible to 
properly account for serial correlations in the 
observations.  Third, and perhaps most significantly, the 
all-important background error covariances can 
become, at least partially, flow-dependent. 
 
The advanced four-dimensional algorithms fall into two 
classes.  The first class contains sequential algorithms 
based on the Kalman filter and contains many variants 
such as the ensemble Kalman filter, extended Kalman 
filter, Kalman smoother etc.  The second class contains 
the variational algorithms, which are all approximations 
to the generalized inverse problem.  In the variational 
algorithms, one seeks to minimize a four-dimensional 
cost function, which measures the fit to the initial 
conditions, the observations, the model and spatial 
boundary conditions.  In strong-constraint minimization, 
the prediction model is assumed to be perfect, thus 
eliminating one term from the cost function.  In the more 
sophisticated (and expensive) weak constraint 
algorithms, one does not make the perfect model 
assumption. 
 
As for the 3DVAR algorithms, the four-dimensional 
variational algorithms can be posed in one of two 
different spaces – model space and observation space.  
Traditionally, model space has been the preferred 
choice for atmospheric four-dimensional variational 
algorithms, but there exists a complete theory for four-
dimensional variational assimilation in observation 
space.  This theory is known as representer theory and 
has been extensively developed and applied to 
oceanographic data assimilation problems by Bennett 
(1990). 
 
The oceanographic representer algorithms generally 
perform minimizations over a single (long) time-period to 
provide state estimates and derived quantities, leading 

                                                 
* Corresponding author address:  Liang Xu, Naval 
Research Laboratory, Monterey, 7 Grace Hopper Ave., 
CA 93943, USA; email: xu@nrlmry.navy.mil 

to increased understanding of ocean circulations.  
Conversely, data assimilation in the atmosphere is 
concerned with providing initial state estimates for 
prediction models to estimate future atmospheric states.  
Thus, in atmospheric data assimilation, most operational 
centers operate data assimilation cycles in near real 
time.  Consequently, Xu and Daley (2000) extended the 
representer theory to produce the cycling representer 
algorithm. 
 
In all four-dimensional variational data assimilation 
algorithms, the user must specify the initial and 
observation error covariances, the model error 
covariance (in the weak case) and perhaps boundary 
error covariances.  The success of the data assimilation 
depends critically on the accurate specification of these 
covariances. For oceanographic data assimilation, 
where the minimization period is long, the initial error 
covariances only influence the early part of the period 
and have little influence over most of the period.  Thus, 
for oceanographic problems the specification of the 
initial error covariances is not very critical.  In 
atmospheric data assimilation, where the assimilation 
cycles are very short (3-12 hours), the specification of 
the error covariance at the beginning of each cycle is 
very important. 
 
The cycling representer data assimilation algorithm of 
Xu and Daley (2000) is a weak constraint four-
dimensional variational data assimilation algorithm, 
which provides an internally consistent estimate of the 
error covariance at the beginning of each cycle, based 
on the results of the previous cycle (and implicitly all 
previous cycles).  In Xu and Daley (2000), the cycling 
representer algorithm was applied to a one-dimensional 
transport problem and was able to successfully extract 
the signal from noisy and sparse observations.  
However, the algorithm is very computationally 
demanding and awaits considerable enhancement in 
computer power before being practical for operational 
forecast models. 
 
Because of the computational expense of the cycling 
representer algorithm of Xu and Daley (2000), an 
accelerated form has been developed (Xu and Daley, 
2001).  In the accelerated cycling representer algorithm, 
the representer matrix is calculated implicitly and the 
initial background error covariance at the beginning of 
each cycle is specified rather than being calculated.  
This is much more computationally tractable than the 
cycling representer algorithm itself and could be 
implemented for operational models on the computers 
of today. 



We have two objectives in this paper.  The first objective 
is to apply the cycling representer algorithm to a more 
realistic and computationally demanding data 
assimilation problem than the study of Xu and Daley 
(2000).  Specifically, the problem is a two-dimensional, 
multivariate barotropically unstable shallow water 
system.  The second objective is to apply the 
accelerated cycling representer algorithm of Xu and 
Daley (2001) to the same problem.  The results are also 
compared with the ones using the original representer 
algorithm of Bennett (1990). 
 
2.  THE DATA ASSIMILATION SYSTEM 
 
The data assimilation system used in this study consists 
of three components.  They are the data assimilation 
algorithms, the prediction and the adjoint models of a 
linear shallow water equation system, respectively.  
Three different representer algorithms were used in this 
study.  They are the original representer algorithm 
(Bennett, 1990), the cycling representer algorithm (Xu 
and Daley, 2000), and the accelerated cycling 
representer algorithm (Xu and Daley, 2001). 
 
The shallow water system is one of the simplest and 
most frequently used test beds for applications in 
meteorology.  Despite the overall simplicity of the 
system, it displays some of the complex multivariate, 
multidimensional interactions that are commonly 
observed in more comprehensive meteorological 
systems, such as the primitive equation system.  A 
shallow water version of the Coupled Ocean 
/Atmosphere Mesoscale Prediction System (COAMPS) 
was used to construct the numerical tangent linear and 
adjoint models.  Readers who are interested in the 
numerical techniques used in COAMPS can find 
detailed descriptions in Xu (1995) or Hodur (1997).  The 
model domain consisted of a rectangle of 3850 km by 
3850 km.  There were 11 gridpoints in east-west (x-) 
and north-south (y-) directions, respectively.  The total 
assimilation time period was 96 hours with a timestep of 
600 s. 
 
3.  THE DATA ASSIMILATION EXPERIMENTS 
 
In this study, we conducted 3 experiments, namely 
cycling with covariance updating (cycling representer), 
cycling with no covariance updating (accelerated cycling 
representer) and non-cycling (standard representer), 
respectively. 
 
A basic state cosine-square jet similar to the one of 
Todling and Ghil (1994) was used to generate the 
needed barotropic instability.  Singular vector analysis 
was employed to explicitly obtain all the singular vectors 
associated with the unstable system.  The “true” solution 
for the problem was not chosen to be the leading 
unstable mode, but rather, was a “neutral” mode.  We 
felt that this choice would be a particular tough test of 
any data assimilation system, because any 
discrepancies or faults of the data assimilation system 

could easily excite an unstable mode and the error 
would grow rapidly. 
 
Almost perfect observations were created from the 
“true” solution.  We used a special observation network.  
In it, observations collocated with the 11 model 
gridpoints were available for the geopotential and wind 
components every 6 hours along a fixed line in the 
north-south direction (x = 5), as indicated by the black 
lines in Figure 1.  This network had a maximum spatial 
coverage in the y-direction at x = 5 as indicated in 
Figure 2, but with a very poor coverage in the x-
direction.  We had 11 observations available along the 
line of x = 5 twice in each 12-hour short cycle for the 
cycling experiments and 16 times in the single long 
cycle for the non-cycling experiment, respectively.  This 
network was created to see if the data assimilation 
systems were capable of spreading the sparse 
information as we hoped. 
 
The initial (t = 0) background conditions were always 
specified to be everywhere equal to zero for the non-
cycling experiments.  For the cycling experiments, only 
the initial background conditions for the first cycle were 
specified equal to zero, the initial background conditions 
for the subsequent cycles were actually provided by the 
analysis at the end of the previous cycle. 
 
We arbitrarily specified homogeneous, diagonal, 
univariate initial (t = 0) background error covariances for 
the geopotential and wind components.  We know from 
experience that such error covariances are, in actuality, 
far from diagonal and are often multivariately-coupled, 
but we wished to make the initial error covariances 
simple and not very realistic. 
 
4.  THE RESULTS 
 
We first demonstrate the performance of the three 
representer algorithms at hour 96 using the special 
observation network, by displaying in Figure 1, the wind 
and geopotential analyses and comparing them to the 
“true” solution.  The geopotential fields are in grayscale 
(see thermometer on the right) while the wind fields are 
plotted as streamlines.  Figure 1 (a) is the evolution of 
the “neutral” mode at hour 96 and is used as the “true” 
solution.  The wind and geopotential analyses produced 
by the cycling, accelerated cycling, and non-cycling 
representer algorithms are displayed in Figure 1 (b), (c) 
and (d), respectively.  All three algorithms appeared to 
be capable of capturing the main features of the “true” 
solution at the end of 96 hours as indicated in Figure 1.  
Among the three algorithms, the cycling representer 
appeared to be the most accurate and closest to the 
“true” solution (comparing panels (a) and (b)).  The 
results from both the accelerated cycling (panel (c)) and 
the non-cycling representer (Panel (d)) algorithms were 
less accurate than from the cycling representer 
algorithm.  Panels (c) and (d) have some similarity, 
particularly the distortions near the left boundaries in the 
x-direction.  We attribute these distortions to the mis-
specification of the initial background error covariance.  



(As noted earlier, in the non-cycling algorithm the poor 
initial error covariance is only prescribed at t = 0, while 
for the accelerated cycling representer, it is prescribed 
at the beginning of every cycle). 

 
To further compare the overall accuracies of the 
analyses during the whole period of data assimilation, 
we used the square root of total perturbation energy 
(SRTPE) as an indicator to represent the overall error at 
any given timestep.  Figure 2 displays the plots of 
SRTPE against time for the three different assimilation 
algorithms.  The dotted line represents the results from 
the non-cycling algorithm.  The long-dash dotted line 
represents the accelerated cycling representer algorithm 
(no covariance updates).  The solid line represents the 
cycling representer algorithm (covariance updated every 
cycle).  All three algorithms produced stable analyses, 
despite the model being barotropically unstable. 
 

(a) (b)

(c) (d)

 
Figure 1.  The wind fields (streamlines) and the 
geopotential fields (in grayscale) at hour 96 (end of the 
data assimilation period) from the “true” solution and three 
different representer algorithms.  Panels (a), (b), (c), and 
(d) show the “true”, the cycling representer, the 
accelerated cycling representer, and the non-cycling 
representer solutions, respectively. 

 
The cycling representer algorithm (solid line) indicated a 
steady reduction of overall errors measured by the 
SRTPE metric.  The error levels were essentially flat 
during each cycle and the error reduction occurred at 
the end of each cycle (rather reminiscent of the behavior 
of a Kalman filter).  The accelerated cycling representer 
algorithm (long dashed line) also showed a steady 
reduction of the overall errors measured by the SRTPE 
metric.  The accelerated cycling and the cycling 
representer algorithms gave exactly the same results in 
the first cycle, but in later cycles, the covariance update 
of the cycling representer is clearly advantageous.  It is 
unfortunate that covariance updating is so 
computationally burdensome. 

The non-cycling algorithm (dotted line) was superior in 
the first 24 hours, which is to be expected, because it 
attempts to find the best fit over the whole 96-hour 
period.  In the non-cycling representer algorithm, all the 
observations are inserted in one period and have about 
the same influence on the analysis.  This is different 
from the cycling representer algorithms where the 
earlier observations influence the later analyses, but 
later observations do not influence earlier analyses. 
 
From computational a point of view, the accelerated 
cycling representer algorithm was the most inexpensive 
one, followed by the non-cycling representer algorithm.  
The cycling representer algorithm was the most 
expensive.  From an accuracy point of view, the cycling 
representer algorithm produced the most accurate 
overall analyses overall, followed by the non-cycling 
representer algorithm.  However, the accelerated 
cycling representer algorithm was more accurate at the 
end of the period (hour 96) than the non-cycling 
algorithm and the error level was still decreasing. 
 

 
 

Figure 2.  The overall error level (from the SRTPE metric, 
equation 12) as a function of time (in hours) for three 
different algorithms, using observation Network A.  The 
solid, long-dashed, and dotted lines are for the cycling, 
accelerated cycling, and non-cycling representer 
algorithms, respectively. 

 
5.  SUMMARY AND CONCLUSIONS 
 
A linear shallow water version of COAMPS with a 
barotropically unstable basic state was used as the test 
bed to conduct three advanced data assimilation 
experiments.  The barotropic instability was produced 
through the use of a cosine-square jet profile in the 
basic state.  The system had a sufficiently small number 
of degrees of freedom that all of the singular values and 
vectors of this system over a 96-hour time interval could 
be obtained explicitly.  A “neutral” eastward-propagating 
mode was selected as the initial condition for a model 
integration to obtain the “truth”, against which all data 
assimilation experiments were to be evaluated. 
 



Almost perfect observations for a special observation 
network was obtained by sampling the “true” solution.  
For the network three data assimilation algorithms were 
tested.  First, there was the cycling representer 
algorithm (which includes error covariance update at the 
beginning of each cycle).  The second algorithm was the 
accelerated cycling representer algorithm (which is 
much less computationally-intensive and does not 
update error covariances).  The final algorithm was the 
non-cycling (single long cycle) representer algorithm. 
 
All three representer algorithms were found to produce 
stable results for the network, despite the possibility of 
enormous error growth associated with the dynamically 
unstable system.  The cycling representer algorithm 
(which updates error covariances at the beginning of 
each cycle) produced the most accurate analysis at the 
end of the data assimilation period.  The non-cycling 
algorithm provided the most accurate state estimate at 
the beginning of the data assimilation period, but the 
worst state estimate at the end.  By using a single long 
cycle, the non-cycling algorithm provided a “uniform” fit 
(similar error reduction) throughout the assimilation 
period.  The accelerated cycling representer produced 
the same result as the cycling representer algorithm in 
the first cycle, but it had slower error reductions for 
subsequent cycles.  This was not surprising, because 
we had deliberately chosen a rather poor representation 
of the error covariance to be specified at the beginning 
of each cycle. 
 
The results from the accelerated representer algorithm 
were very encouraging because it is sufficiently 
computationally-tractable to be used on present day 
multi-processor machines for operational applications.  
It is clear from our experiments, that the assimilation 
errors were steadily reduced after each cycle for this 
algorithm, although the poor specification of error 
covariance at the beginning of each cycle led to less 
error reduction than would have been desirable.  It is 
likely that a more realistic initial error covariance based 
on the statistical approaches used in 3DVAR algorithms 
would be helpful.  Beyond that, there is always the 
possibility of using ensemble techniques to introduce 
more flow-dependence into the initial error covariances. 
 
An effort at the Naval Research Laboratory (NRL) in 
Monterey is currently underway to construct a four-
dimensional variational global data assimilation system 
using the accelerated cycling representer algorithm.  
This algorithm is being constructed for massively 
parallel machines and involves the parallel tangent 
linear and adjoint models of NOGAPS (Navy 
Operational Global Atmospheric Prediction System – 
Hogan and Rosmond, 1991).  The observation and 
forward instrument modeling, as well as the construction 
of the initial error covariances, all comes from NAVDAS 
(NRL Atmospheric Variational Data Assimilation System 
– Daley and Barker, 2000, 2001).  This new algorithm, 
which we refer to as NAVDAS A/R (for NAVDAS 
accelerated representer), is a natural extension of the 

three-dimensional observation space NAVDAS system 
to four dimensions. 
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