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1. INTRODUCTION

It is well-known that high-resolution mesoscale mod-
els can resolve local details of wind fields and thermal and
moisture contrasts forced by underlying inhomogeneities
of surface characteristics and topography. Nevertheless,
the capabilities of conventional statically initialized mesos-
cale models are strongly limited by the lack of important
mesoscale details and cloud/rain information in their initial
conditions due to insufficient observations. The model is
forced to experience a “spin-up” process to adjust the
dynamic and physical inconsistency between the model
and I.C. and to generate the cloud/rain. In this paper, we
demonstrate a Real-Time Four-Dimensional Data Assimi-
lation (RTFDDA) method to alleviate this deficiency and
improve the short-term forecast for a Utah-centered test
region. The system timely collects all available synoptic
and asynoptic observations and dynamically nudges them
into a nested-grid, 3-domain MM5 model with resolutions
of 30/10/3.33km. The details of the system design, model
and observation data used can be found in Jennifer et al.
(2001). This paper will evaluate impacts of the RTFDDA
system on multi-scale data analysis and short-term fore-
cast of local weather by examining different verification
statistics and carrying out case studies for two typical
weather processes.

2. GENERAL PERFORMANCE

Fig.1 shows evolution of RMS errors of temperature,
moisture and winds at surface of the RTFDDA system for
all observations on domain 1 during the winter season
(Jan., Feb. and Mar.) in 2001. The horizontal axis is hour
relative to the forecast, with negative values denoting
FDDA periods and positive values for forecasting periods.
Evidently, the final FDDA analysis possesses minimum
errors for all fields and the errors increase with time.

A large error jump can be seen during preliminary
FDDA and 0 - 3 h forecast periods. The reason is that the
nudging FDDA method is to artificially drive the model
from its wrong states with model constraints (dynamic bal-
ance) to a correct state by merging observation informa-
tion in. The new correct state will be less balanced and the
unbalance will be adjusted within certain time. When the

model transfers from nudging period to forecast period,
the model adjustment will bring significant model error
back and meanwhile start accumulate the model sys-
tem bias.

The model errors change very slowly between 4 -
12 h forecasts. The temperature and moisture forecasts
are degraded with time more evidently than the surface
wind. Generally, in realtime operation, whenever shorter
forecasts are available, it is recommended to use it.

3. SEASONAL, DIURNAL AND SCALE CHANGES

Fig.1 was computed for all observations on domain
1 throughout a three-month winter season of 2001.
Such statistics hides many interesting details about the
scale variations and seasonal changes of weather
situations and underlying properties, as well as the
remarkable diurnal evolution of the weather variables.
These details are particularly important to understand
the model dynamic and physical processes and provide
a guide for model improvement in the future. To look
into the system performance dependency on the
seasonal weather situation and model grid scale,
biweekly statistics were conducted twice a month from
January 1, 2001. Large systematic changes of the
statistic errors can be found between these statistical
outputs. For example, Table 1 compares the results
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Fig.1  RMSE of surface temperature (T), specific humidity (Q), win
speed (Spd) and wind directions (Dir) on domain 1 at DPG.
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selected from January and April, corresponding to winter
and spring, respectively. The statistics were calculated
for each forecast period on the two fine mesh domains:

D2 and D3. Three features are obvious in the table.

Firstly, the fine grid (D3) has much smaller errors than
the coarse grid (d2). This indicates that the fine model
grid tends to resolve smaller scale weather systems as
well as detailed forcing mechanisms from high resolution
terrain and land surface characteristics. The conclusion
is true generally for all of biweekly statistics obtained so
far, for all forecast periods and all weather variables
except wind direction. Secondly, the model error
increases with forecast time, which is consistent with
Fig.1. The third feature is that the system performs
better in the spring than in the winter. We believe that an
introduction of a simple surface snow and moisture
availability scheme (Simon et al., 2001) on March 15 can
be one of the most important factors.

To explore the diurnal changes of the model
performance, verification scores were calculated relative
to the days hour. Again, the statistics are classify into six
forecast periods from final FDDA to 10 - 12 h forecasts.
The bias and RMS errors of temperature and specific
humidity on the domain 3 in the second half of January
and first half of April are shown in Fig.2. In the winter
month (Fig.2 a-d), the model produces remarkable warm
temperature and dry moisture bias. The Largest warm
bias occurs during night and morning. Two minimum
temperature bias troughs appear at around sunrise and
sunset respectively. The evolution of moisture bias is not
in same phase of temperature. Large negative moisture
bias happens in the daytime and relatively small dry bias

Table 1: RTFDDA surface RMSE averaged for domain 2 and 3
on various forecast periods in January and April, 2001

T
(C)

Q
(g/kg)

Spd
(m/s)

Dir
(d)

D2 D3 D2 D3 D2 D3 D2 D3

January Final 2.74 1.98 0.84 0.37 2.39 2.10 79.4 78.9
Prelim 2.81 2.06 0.90 0.41 2.53 2.20 80.7 80.2
F01-03 3.23 2.56 1.18 0.58 2.90 2.58 85.0 86.8
F04-06 3.44 2.83 1.26 0.64 2.95 2.60 85.8 88.4
F07-09 3.58 3.00 1.27 0.68 2.95 2.61 86.0 89.3
F10-12 3.65 3.13 1.26 0.70 2.96 2.62 86.1 88.4

April Final 1.95 1.55 1.31 0.52 2.28 2.23 73.5 68.5
Prelim 2.05 1.68 1.33 0.58 2.39 2.30 75.2 70.8
F01-03 2.41 2.18 1.59 0.85 2.64 2.54 78.6 79.1
F04-06 2.50 2.31 1.69 0.94 2.68 2.62 79.1 81.9
F07-09 2.53 2.31 1.73 0.91 2.69 2.68 79.6 82.2
F10-12 2.56 2.36 1.77 0.95 2.72 2.74 79.8 82.5

occurs during the night. As aforementioned, the system
did not resolve snow cover properly and it used a
constant climate land surface moisture availability
before March 15. The underestimate of large reflectivity,
sublimation and upward moisture flux from the dominant
snowcover is mainly responsible to the relatively large
warm and dry bias in the winter month.

The large model bias in January actually provides a
good opportunity to examine the role of the FDDA. Fig.2
illustrates clearly that the nudging process could
successfully assimilate the observation information into
the model system and achieve three-dimensional
dynamically-consistent high-resolution analysis fields.
Starting the model forecast from these FDDA analyses,
the model produces more accurate short-term forecast
without large “spin-up” problem. During the night time
when the large warm bias occurs, the model forecast
degrades gradually with increasing forecast time from
an error of ~0.7 C for the final FDDA to ~2.3 C for the
longest (10 - 12 h) forecasts. The large daytime dry bias
has a similar properties. The kicks, one every 3 hours,
in the curves of the preliminary FDDA and larger error
increase between the preliminary FDDA and 0-3 h
forecast result from the balance adjustment discussed in
Section 2. The same phenomena appear in the RMS
errors of the nudging fields.

In the spring month (Fig.2 e-h), the temperature
bias is much less than that in the winter. Due to both
less surface snow cover and the introduction of a
surface snow and land-surface moisture availability
scheme, the large warm and dry bias seen in the winter
were reduced remarkably. Like those in the winter, there
are two temperature bias troughs taking place around
sunrise and sunset times, appearing as the largest cold
bias in the spring month. Dry bias starts to develop in
the early morning and stays throughout the daytime. In
contrast, the model has excessive moisture during the
night. The spring month presents also much smaller
RMS error for temperature than the winter and the
phase of the diurnal evolution appears to be reversed.
The evolution of the moisture RMS errors in the spring
month are pretty similar to those in the winter. However,
the magnitude of the error is a little bit larger.

Finally, it should be pointed out that since the
diurnal changes of bias errors of the model variables
can go positive and negative, one should look at both
bias and RMS errors in order to evaluate the model
performance at a specific time or a single model cycle
which can starts at varying times. Extra cares should be
taken when looking at the bias scores. For instance, in
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Fig.2g, it looks that the longest forecast performs better
than the short forecast and FDDA analysis around 13Z.
However, at the same time, their RMS errors (Fig.2h) at
the same time shows an opposite conclusion.

4. CASE STUDY

As pointed out at beginning of the paper, there are
two common problems in mesoscale numerical
simulation and prediction: lack of proper observations to
initialize model cloud/rain fields and detailed mesoscale
structures. These problems get worse as the model
resolution increases. In the present case, the "spin-up"
for the mesoscale circulations can be serious due to
steep mountains and large contrast of the underlying
charac-teristics in the fine mesh areas. Since the
nudging method assimilates the observations into the
model equations dynamically, it not only generate good
three-dimensional analyses of the nudging variables by
driving these model variables directly toward the
observed states, but is also capable of obtaining proper

cloud and precipitation information indirectly through the
model dynamic and physical processes. The continually
running model that resolves the fine scale terrain and
land uses can generate the locally-forced mesoscale
circulations, with the nudging process further improving
these circulation with any available observations. Thus,
the continuous RTFDDA cycling provides initial cloud
and precipitation fields and detailed mesoscale circula-
tions for short-term forecasts and reduces "spin-up"
problem for cloud/rain as well as local circulations. It is
our belief that the improvements discussed in previous
sections are mostly resulted from this mechanism.

To demonstrate more clearly the advantages of the
RTFDDA through improving the model initial conditions
for cloud/precipitation and fine scale mesoscale
circulations, two cases were selected and parallel
comparisons with and without FDDA processes were
conduted: one is for March 9 and the other is for April
17, 2001. March 9 was dominated by snowfall from a
slow-moving weak mesoscale frontal cycle over Utah
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Fig.2 Diurnal change of RTFDDA model surface bias (left column) and RMSE (right) of temperature (T) and specific humidity (Q
on domain 3 in during January 15 - 29 (top 4 panels) and April 01 - 15 (bottom 4 panels), 2001, for each forecast period.
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area. In contrast, April 17 is chosen for its clear-sky
situation controlled by a upper-air strong ridge and the
lower level circulations in domain 2 and 3 were mainly

forced by local terrain and land use contrasts.

The verification scores were computed from the
parallel model runs for the two cases. In order to remove
the artificial effects of the diurnal evolution, the test starts
from the middle of the previous day and thus 12 cycles
were run for both cases. The FDDA cycles (E2) were
divided into 3 periods: 0 - 6 h FDDA, 1 - 6 hour forecast
and 7-12 hour forecast. The parallel runs without FDDA
(E1) run 13 hours and were divided into two periods: 1-7
hour forecast and 8-13 hour forecast (for convenience,
we still called the two periods 0 - 6 hour and 7 - 12 hour
forecast respectively). The one hour lag is necessary to
make the forecast periods of the runs with and without
FDDA coincidely. The bias and RMS errors of
temperature, specific humidity, sea level pressure, wind
speed and directions for March 9 are shown in Table 2.
For all variables in the table, it is obvious that the FDDA
analysis (E2 0 - 6 hour FDDA) possesses the least
errors, consistent with the general longer term statistics
discussed in previous sections. In both 0 - 6 h and 7 -12
h forecasting periods, the FDDA cycles (E2) perform
significantly better than the runs without FDDA (E1).

On March 9 (Table 2), the surface appears to be too
dry in E1 throughout the forecast period and a little bit
too warmer during the 7 - 12 hour forecast. E2 tends to
correct both problems. E2 also achieves a better surface
winds prediction, though relatively small. By analyzing
various model fields (not shown), it is found that the
larger errors in E1 are mainly caused by the phase error
of the frontal rain system. In this case, the cloud/rain
"spin-up" process leads to slow development of rain in

Table 2: Comparison of model errors on domain 3 between
rtfdda forecst and no-fdda forecast on March 9, 2001

0 - 6 hour 7 - 12 hour
E2

FDDA
E1

FCST
E2

FCST
E1

FCST
E2

FCST

T(C) BIAS 0.04 -0.36 -0.14 1.32 0.63
RMSE 1.61 2.91 2.23 3.05 2.53

Q(g/kg) BIAS 0.08 -0.31 0.08 -0.59 0.21
RMSE 0.47 1.09 0.66 0.94 0.87

SLP(hPa) BIAS 2.49 3.42 2.77 1.44 1.99
RMSE 3.22 4.38 3.59 3.61 3.30

SPD(m/s) BIAS -0.61 0.20 -0.92 0.92 -0.53
RMSE 2.29 2.67 2.53 2.71 2.71

DIR BIAS -2.19 -3.45 -5.87 -6.93 1.66
RMSE 55.76 84.65 73.81 94.11 77.35

most cycles. The main frontal rainbands is displaced to
the west of the observed band, which results in an
overall warm and dry bias for domain 2 and 3. Fig. 3
compares snap-shots of radar reflectivity from E2 0-h
forecast, E1 1-h forecast and Utah NOWRAD, valid at
16Z, March 9. Obviously, the FDDA method generated
reasonably good precipitation fields to initialize the
model forecast. However, in E1, after one hour of "spin-
up", it only obtains a weaker rain system, located to the
west of the observed reality.

Fig.3 Comparison of radar reflectivity of observation (a), RTFDDA
0-h forecast (b) and “static” 1-h forest (c) at surface on
domain 2, valid at 16Z March 9, 2001.
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The clear-sky case of April 17 presents mainly
locally-developed circulations that are forced by uneven
underlying ground heating/cooling and terrain. In
domains 2 and 3, various local circulation (with scales

between 20 and 400 km) systems, including lake-
breeze, mountain/valley breeze, salt breeze, and others
can be seen clearly during the day (no shown). For this
case, surface temperature changes take a controlling
role in driving the circulations. The verification results
(not shown) indicates that the model system apparently
produced significant cold bias in this case, -2.7 and -2.8
C for E1 0 - 6 and 7 - 12 hour forecast, respectively.
Comparing E1 and E2, the FDDA analysis (E2 0 - 6
hour FDDA) successfully corrected the bias (to -0.3 C)
and forecast a better temperature for both 0 - 6 (a bias
of -0.8 C) and 7 - 12 hour (a bias of -1.8 C) forecast.

Since the surface temperature plays a controlling
role, E2 forecasts that start with the better initial surface
temperature result in a better forecast of the local
circulations. This is generally true when we look at the
surface circulation plots at various times. Fig.4
compares the surface temperature and wind vectors on
domain 3 from the E2 4-h forecast and E1 5-h forecasts,
valid at 22Z, April 14, when the thermally driven
circulations take maximum intensity. In both E1 and E2,
upslope valley breezes can be found around each
mountain ridge. In spite of the overall resemblance
between the E1 and E2, large discrepancies exist. The
most remarkable one can be found in the playa area
located in the northwest quadrant of the domain. Playa
possesses large heat capacity, high albedo, and high
thermal conductivi-ty, which results in much slower and
less solar heating than the neighboring desert. Thus,
salt breezes develop in the afternoon in clear-sky
situation. E2 (Fig.4a) shows a clearer salt-breeze
structure than E1 (Fig.4b). Fig.4c indicates that the
FDDA cycle (E2) predicts much warmer and better
temperature in the desert area to the east and south of
the playa, enhancing the flow from playa to the desert.
The warmer desert also strengthens the lake breeze
from the Salt Lake (northeast corner of the domain) and
modifies locally the large scale upslope breeze driven
by large ranges in Nevada to the west and valley flow to
the southwest of the domain.
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Fig.4 Surface wind vectors and temperature of E2 4-h forecast (a),
E1 5-h forecast (b) and (a)-(b) (c) on domain 3, valid at 23Z
Apr. 17, 2001. Low temperature center corresponding to
major ridges are labelled with “L”. The thick dashed line
marks roughly the playa-desert boundary.
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