P1.12

ADAPTIVE TUNING OF OBSERVATION ERROR PARAMETERS

IN A VARIATIONAL DATA ASSIMILATION

G. Desroziers!, B. Chapnik, S. Ivanov and F. Rabier

Météo-France, Centre National de Recherches Météorologiques

1. INTRODUCTION

Modern assimilation schemes basically rely on lin-
ear estimation theory, or on an extension of this for-
malism. In such a formulation, each observation is
given a weight that is proportional to the inverse of
its specified error variance measuring the confidence
given to this particular observation. Practical imple-
mentations of operational analysis schemes are also
based on the use of background fields, that can be seen
as another source of observations (Talagrand 1997)
with a given confidence corresponding to the forecast
error covariances. The analysis is known to be very
dependent on the specification of the errors of the dif-
ferent observations, and because these errors are not
perfectly known, a large potential for improvement on
analyses is offered by methods allowing their tuning.

On the other hand, large operational centers are
now using, or have planned to use, assimilation
schemes based on a 3D or 4D variational approach,
that especially allows the use of a wide range of obser-
vations (Courtier and Talagrand 1987). Diagnostics
based on statistics of departures between observations
and the minimizing solution have been proposed in the
variational framework (Talagrand 1999). In this pa-
per, we present a method based on these diagnostics,
but that aims to perform an adaptive tuning of the
error parameters from a single batch of observations
(Desroziers and Ivanov, 2001).

2. VARIATIONAL FORMALISM

The principle of the incremental formulation of
3D/4D-Var algorithms (Courtier et al. 1994) is to
seek the increment dx to be added to the background
x® - so that the analysis is given by % = =’ + = -
which minimizes the cost function

J(6x) = J%d=)+ J°(0x)
1
= §5wTB_1(5:E

+ %(d — Héz)"R™'(d - H dx).

The background term J® measures the distance be-
tween the analysis ®® and the short-range forecast

% with B the forecast error covariance matrix. In
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the observation term J°, H 1is the linearized obser-
vation operator, R stands for the observation error
covariance matrix, including representativeness error
(Lorenc 1986), and d = y° — H(«") the innovation
vector, with H the observation operator that allows
the computation of the model equivalents in the space
of the observations.
The solution of the minimization of J is given by

dx = Kd = K(y—H(:Bb)),

where K = BH” (HBH” + R)~" is the gain matrix.

Following Talagrand (1997), the complete vector of
observations z° can be seen as the two components
vector of proper observations y°, with dimension p,
and of background estimate ®, with the same dimen-
sion n as the true state z° : z° = (2%, y°)T with

2’ = 2! + eb,
where €® is the vector of unknown forecast errors with
covarlance matrix B and

yo — H(:Et) —|—60,

where €° is the vector of unknown observation errors
with covariance matrix R. Thus 2° can also be writ-
ten

z° = ['(z') + ¢,

with T' the complete observation operator and e the
vector of forecast and observation errors, with dimen-
sion n + p.

An important result pointed out by Talagrand
(1999) is that, if J; stands for a term of J, which
is the sum of m; elements, then the expectation of J;
at the minimum is

1 T -1 a

E[J;(2%)] = §[mj —Tr(T; §;7°T;PY)],
where I'; and §; are respectiveley the linearized ob-
servation operator and the observation error covari-
ance matrix associated with these m; elements. Here
P? stands for the estimation analysis error covari-
ance matrix resulting from the analysis with the whole
set of m pieces of observations (m = Zj m; and
J=> ) ).

It can also be shown that this expression can be
re-written with

BI) = 3lps — Tr(P;(HEK)P;)]



where P; is the projection operator that allows to go
from the complete set of observations to the subset
of p; observations, and R; is the observation error
covariance matrix associated with this subset.

On the other hand, it can be proved that this ex-
pression can be evaluated with

(Pjoy)" Pj[HSm{y, 50 — Hoxly),
where ®%,,, and 5‘B?y+6y) are the analyses respec-

tively computed with the complete set of true val-
ues y° of the observations, and with the whole set
of perturbed observations y° + dy (where dy is a p-
dimensional vector of small perturbations with Gaus-
sian distribution).

The expectation of parts J;’ of the background term
can be determined with the same kind of procedure.

3. ADAPTIVE TUNING

The previous cost function J can be re-written with

1 1,
J(@z) =" - Jb (o) + Z w7 J¢(0w),
J J

J

where 33’»2 and 552 are respectively the background and
observation error weighting parameters supposed to
be homogeneous for a given subset of observations j.
The rationale behind the procedure that we propose
is that if the 5?2 and 3;?2 are the proper weights to
intoduce, then the values S% J;’((iw) and sj% J? (o)

7
should be close to their expected values which can be
computed as shown previously. This leads to a non-
. . b2
linear problem with respect to parameters s?
that can be solved with a fixed-point iterative method.

4. APPLICATION IN 3D-VAR

02
and s7°,

The previous procedure has been applied in the
framework of the French Arpéege 3D-Var, based on a
spectral global model and an incremental formulation.
The test is performed with both simulated background
and radiosounding measurements with true locations

the observation errors are produced by using the
operational variances for geopotential, temperature,
wind and humidity. The initial error profiles have
been deliberately chosen very different from the true
ones (respectively dotted and solid lines in Fig. 1).
Figure 1 shows that the convergence of the iterative
procedure is extremely fast : the profiles obtained af-
ter a single iteration of the fixed-point procedure are
very close to the true ones.

5. CONCLUSION

The statistical expectation of parts of the cost func-
tion minimized in a variational analysis can be com-
puted with a randomization method. These compu-
tations allow to propose a new method for determin-
ing observation error parameters in an assimilation
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Figure 1: Temperature error profiles used for the sim-
ulation of observations (solid line), imposed at the be-
ginning of the iterative procedure (dotted line), after 1
iteration (dashdot line) and after 5 iterations (dashed
line).

scheme. The application of such a method on sim-
ulated radiosounding observations is very promising.
The possibility to adapt the procedure for the deter-
mination of TOVS radiance errors is currently inves-
tigated.
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