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11.Introduction 
         Mountains have important influences on large- and 
mesoscale meteorology, and one of profound effects is on 
precipitation. An understanding of how topography modulates 
precipitation under a variety of large- and meso-scale conditions 
must be developed.   Recently, Colle et al. (1999) verified the 36- 
and 12-km resolution Penn State/NCAR Mesoscale Model (MM5) 
(Grell, et al., 1993) precipitation forecasts from 9 December 1996 
through 30 April 1997 and NCEP's 10-km resolution Eta Model 
(Eta-10) forecasts from 7 January 1997 through 30 April 1997 
across the Pacific Northwest. It is found that the 12-km MM5 
tends to generate too much precipitation along the steep 
windward slopes and not enough precipitation in the lee of major 
barriers. The Eta-10 overpredicts precipitation along the windward 
slopes even more than the 12-km MM5.  
      As has been understood for decades, the horizontal pressure 
gradient force (HPGF) in terrain-following (including pressure-
based and height-based) coordinates is a small difference 
between two large terms over steep slopes and its computational 
errors are very large. This problem also arises in the 
nonhydrostatic model MM5 formulated in terms of perturbations 
relative to a reference basic state. Dempsay and Davis (1998) 
gave an error analysis of the MM5's HPGF schemes, and found 
that the standard HPGF scheme in MM5 can produce significant 
velocity errors above steep terrain. Some alternative schemes 
may reduce, but cannot eliminate, these errors. Mesinger (1984) 
developed the step-mountain approach of the Eta-coordinate 
system to calculate the pressure gradient in a region of complex 
terrain. However, the piecewise constant representation of the 
terrain is only first-order accurate in mathematics, whereas the 
continuous representation of the terrain in the terrain-following 
coordinates is at least second order accurate (depending on the 
chosen method of discretization). Furthermore, physical 
parameterizations in the planetary boundary layer are 
straightforward with the terrain-following coordinates.  
      Recently Chen and Bromwich (1999, hereafter referred to as 
CB99) proposed a new method to compute the HPGF in σ-
coordinates and this method uses terrain-following coordinates 
but can eliminate large errors in computing the HPGF over steep 
slopes in mountainous regions. Because the horizontal wind can 
be separated into its irrotational and rotational parts in a limited 
region (Chen and Kuo, 1992a,b), the HPGF G in σ-coordinates is 
also a horizontal vector and can also be separated into its 
irrotational and rotational components in a limited region and 
expressed by 
            G = - ∇Φe - k × ∇η             (1)             
where Φe  and η are referred to as equivalent geopotential and 
geo-streamfunction, respectively. 
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       Recently, the MM5 (Version 2) has been used to simulate 
a complete annual cycle from April 1997 through March 1998 
over the Greenland ice sheet by Cassano et al. (2001). The 
simulations are conducted by a series of 48 h duration 
forecasts every 24 hours, and only the forecasts of the second 
24 h period are used in the statistics. The modeled precipitation 
distribution agrees with available accumulation observations 
(Csatho et al. 1997) in the interior of the ice sheet, but is 
excessive along the steep coastal margins of the island. The 
precipitation amounts predicted by the MM5 are substantially 
large with a maximum value in excess of 400 cm/yr compared 
to Csatho et al. (1997)'s analysis with a value about 120 cm/yr 
located on the southeast coast of Greenland. The equivalent 
geopotential Φe has been used in a generalized ω-equation in 
σ-coordinates, and the precipitation computed from the 
dynamical method (Chen et al. 1997a; Bromwich et al., 1998; 
CB99) for the same time period has a very good result with a 
maximum value in excess of 140 cm/yr on the southeast coast 
of Greenland. The excessive precipitation predicted by the 
MM5 along the steep margins of the Greenland ice sheet is 
similar to the problem documented by Colle et al. (1999) for 
forecasts along the steep windward slopes of the Cascade 
Mountains. In this paper, (1) is further used in the MM5 
(version 3) to compute the HPGF instead of its original HPGF 
scheme. 
2. The dynamic equations and HPGF of the MM5, and the 

inner and harmonic parts of the equivalent geopotential 
and geo-streamfunction and the internal and external 
HPGF 

      The pressure in the MM5 in z-coordinates is denoted by 
          p (x, y, z, t) = p0(z) + p' (x, y, z, t)  
where p0(z)  is a stationary reference state, and p'(x, y, z, t) is 
perturbation from this state. The vertical coordinate σ is 
defined by 
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where  p* (x,y) = ps (x, y) - pt , and  ps(x, y)  and pt  are the 
surface and top pressure of the stationary reference state,  
respectively. The pressure at a grid point is given by 
          p = pr0 + p’ = p* σ + p t + p’ 
where  pr0(x,y, σ) is the difference between p and p’ , and it is 
a stationary part in σ-coordinates and expressed by 
         pr0 = p – p’ = p* σ  + p t 
     The x- and y-components of the momentum equations in 
MM5 are denoted by 
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 where Fx and Fy are advection and other terms.  The HPGF in 
(3) and (4) is expressed by 
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If the HPGF (1a) is separated into the rotational and irrotational 
parts as in (1.1), the equivalent geopotential Φe and the geo-
streamfunction η satisfy the Poisson equations 
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Over the globe, the above Poisson equations are easily solved 
without lateral boundary conditions. If they are solved in a 
limited region, the boundary condition is expressed by 
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where  s  and  n  are tangential and normal unit vectors, 
respectively, and s and n are distances along and normal to the 
boundary. In this case,  the equivalent geopotential and  geo-
streamfunction are derived by solving Poisson equations (5) 
and (6) with the coupled boundary conditions (7) and (8). 
      Using the harmonic-sine series, the solutions for  Φe  and η  
can be separated into their inner and harmonic parts as 
       Φe = Φei + Φeh ,       η = ηi + ηh        (9) 
where Φeh , ηh  and  Φei , ηi  are the harmonic and inner parts of 
the equivalent geopotential and the geo-streamfunction, 
respectively. The inner parts Φei and ηi satisfy Poisson 
equations (5) and (6) with zero Dirichlet boundary value. The 
solutions of Φei and ηi can easily  be derived by using the 
double Fourier sine series. The internal HPGF is then 
computed by 
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where  GxI  and GyI   are the components of the internal HPGF. 
     In a limited region, the difference between the HPGF and 
internal HPGF is denoted by 
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and  GxE  and GyE  are referred to as the components of the 
external HPGF.  Utilizing (1), (9) and (10), the external HPGF 
can be expressed by the harmonic parts of the equivalent 
geopotential and the geo-streamfunction as 
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        The harmonic parts of the equivalent geopotential and the 
geo-streamfunction satisfy the Laplace equations 
    )14(0,0 22 =∇=∇ heh ηφ  

Thus, the external HPGF is not only non-divergent but also 
irrotational in a limited region. The coupled boundary 
conditions (7) and (8) for solving Laplace equations (14) of 
the harmonic parts in region R become 
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where EtG  and EnG are the tangential and normal 
components of the external HPGF, GE , at the boundary. 
 
3.  The HPGF computed from a reconstruction method 
and comparison of the analyses and the outputs of the 
predicted results with and without the equivalent 
geopotential over mountainous regions 
     The topography of Greenland with steep slopes near its 
coast is shown in Fig. 1. As synoptic example, the sea-level 
pressure (SLP) map on 0000 UTC, 1 February 2001 is 
shown in Fig. 2. Data are obtained from NCEP at 10×10   

resolution and interpolated to 23 σ levels where top level is 
at 100 hPa. The grid spacing is 40 km. The inner parts of the 
equivalent geopotential and geo-streamfunction are derived 
from Poisson equations (7) and (8) with zero Dirichlet 
boundary values, and these inner parts at σ=0.995 are 
shown in Figs. 3 and 4, respectively. Because the HPGF,  -
▽ψ(x,y,p,t) in p-coordinates is also irrotational, the 
equivalent geopotential ψe (x, y, σ, t) in σ-coordinates can 
be used in the same way as ψ( x, y, p, t) is used in p-
coordinates. The equivalent geopotential ψe can be used in 
synoptic analysis on constant σ surface.  In Fig. 2, some 
artificial anomalous systems exist over Greenland in the SLP 
map caused by pressure reduction to the sea level, but they 
are not present in the analyses at σ =0.995 in Fig. 3, and 
weather systems over Greenland are shown smoothly on the 
σ-surface analyses. The geostrophic relation ψe =f 0 ψ 
between the equivalent geopotential and rotational wind on 
the constant σ surface for the synoptic scale motions is the 
same as that ψ =f 0 ψ on the isobaric surface. 
           In p-coordinates, the HPGF -∇Φ (x, y, p, t) has only 
the irrotational part, and its rotational part, (corresponding to 
- k × ∇η), can only be computed through the lower boundary 
condition at the earth's surface and expressed implicitly.  The 
rotational part is much smaller than the irrotational part 
shown in Figs. 3 and 4, thus the small difference between 
two large terms over steep slopes is eliminated 
automatically. 
     The components of the internal HPGF, xIG  and yIG , 
can be computed from (10), and those of the external HPGF, 
xEG  and yEG , are computed from (11) and (12). Within 

region R, the external HPGF, GE, is both irrotational and 
nondivergent, and it satisfies 
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       Differentiating the first and second equations of (17) with 
respect to x and y, respectively, the following Laplace equations 
for xEG  and yEG , are derived as 

    )18(0,0 22 =∇=∇ yExE GG  
Thus, the components of the external HPGF, xEG  and yEG , 
are harmonic functions themselves, and do not have maximum 
and minimum within region R and attain their extreme values at 
the boundary. 
     Because the external HPGF is both irrotational and 
nondivergent, based on Chen and Kuo (1992b), its two 
components at the boundary 
  ( ) ( ) )19(|,| Σ=Σ= ΣΣ yEyExExE GGGG  
must satisfy the consistency condition. As pointed out by Chen 
et al. (1996), the method of solving two Laplace equations (18) 
with the given boundary values (19) to derive the external 
HPGF is referred to as a direct method. This direct method can 
accurately be used to reconstruct the external HGGF under the 
condition that the prescribed boundary values (19) satisfy the 
consistency condition. There are several methods to reconstruct 
the HPGF from Φe  and η  in a limited region (Chen and Kuo 
1992a), the direct method is the simplest one. If the prescribed 
boundary values ( )ΣxEG  and ( )ΣyEG do not satisfy the 
consistency condition, the direct can also be used, but in this 
case the derived external HGGF may no longer be both 
irrotational and nondivergent and have some errors due to the 
inconsistency boundary condition. 
     The external HGGF reconstructed by the direct method 
under the boundary values (19) is expressed by 'xEG  and 

'yEG , and then the HPGF is derived by 
)20('' yIyEyxIxEx GGGGGG +=+=   

This method is used in the MM5 to compute the HPGF instead 
of the original method (1a).  The 36h predicted SLP and output 
ψei   at  σ=0.995  from the MM5 are shown in Figs. 5 and 6, 
respectively.  The 36h precipitation prediction of the MM5 
without ψe  is shown in Fig.7,  it is substantially large over the 
southeast of Greenland. The predicted precipitation errors are 
greatly reduced by using (1) without other changes.  The 
difference between the component xG  of the HPGF computed 
by (1) and (1a) at  σ=0.87 at  24h after the initial time is shown 
in Fig. 8. The xG  computed by (1) is smaller than by (1a) in the 
windward steep slopes. 
4. Conclusion 
     There are several important advantages to using (1). The 
first is that the HPGF in σ-coordinates is computed accurately. 
Based on the tests of the computed HPGF over Greenland, the 
major differences between the original scheme of MM5 and (1) 
are located over the steep slopes. Tests of the simulated 
precipitation by using (1) in the MM5 without other changes 
show that the precipitation errors over the steep slopes of 
Greenland are improved. 
       The second advantage is that Φe can be used in synoptic 
analysis and model outputs directly on constant σ surfaces and 
in the same way as Φ(x, y, p, t) is used in p-coordinates. The 

modeled results are not necessary to transfer to p-coordinates 
and can be compared with the observed analyses directly in σ-
coordinates. The artificial anomalous systems over Greenland 
on the sea-level pressure maps and the lower tropospheric 
isobaric surfaces are not present, and weather systems over 
high mountain regions are shown more smoothly and correctly 
on the σ surfaces.  
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Fig. 1.    The 
topography of 
Greenland and 
adjacent areas 
(in m with a 
contour  interval 
of 400 m). 
 

Fig. 3     The 
inner part of the 
equivalent 
geopotential at 
0000 UTC 1 
February   2001 
at σ=0.995 (in 
10 m2 s-2 and 
contour interval: 
40x10 m2 s-2) 
 

Fig. 5     The 36h 
predicted sea 
level pressure (at 
4 hPa spacing) 
from the  initial 
time (0000 UTC 
1 February 2001) 
by the MM5. 
 

Fig. 7     The 36h 
total precipitation 
prediction (at 0.6 
cm spacing) from 
the initial time 
(0000 UTC 1 
February 2001) 
by the MM5 
without the  
equivalent 
geopotential. 
 

Fig. 2.    The 
sea level 
pressure (at 4 
hPa spacing) 
at 0000 UTC 
1 February    
2001. 
 

Fig. 4     
Same as Fig. 
3 but for the 
inner part of 
the geo-
streamfunctio
n. (in 10 m2 s-2

and contour 
interval: 4x10 
m2 s-2) 
 

Fig. 6     The 36h 
predicted inner 
part of the 
equivalent 
geopotential 
from the  initial 
time (0000 UTC 
1 February 2001) 
by the direct 
output at 
σ=0.995 from 
the MM5 Same 
as Fig. 3 m2 s-2).
Fig. 8     The 
distribution of the 
difference 
between the x-
component  Gx 
of the HPGF 
computed by (1) 
and (1a) at 
σ=0.87 at 24h 
after the initial 
time (0000 UTC 
1 February 
2001). 


