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1. INTRODUCTION

In order to mitigate the influence of adverse
weather, it has become routine for government
and civil organizations to rely on Numerical
Weather Prediction (NWP) models to make
operational decisions (Roebber and Bosart,
1996). But NWP cloud simulations are fraught
with challenges that limit their accuracy. No
routine observations of cloud water and cloud ice
are taken, therefore NWP models are usually
initialized with zero cloud condensate or with
condensate mass distributions obtained from
earlier runs. Microphysics cloud
parameterizations are usually validated based on
case studies of winter storm events (e.g. Schultz,
1995).  But how well do models forecast clouds
on a day-to-day basis, particularly when forcing is
weak or terrain-dependent?  Our study answers
this by statistically comparing cloud forecasts
from a high-resolution mesoscale model with
cloud analyses from a meteorological satellite.

2. MODEL

The model used for this experiment is the fifth
generation of the Pennsylvania State
University/National Center for Atmospheric
Research (NCAR) Mesoscale Model (Version 3)
(MM5).  It is a nonhydrostatic, compressible
mesoscale modeling system with many options
for grid configurations and physics
parameterizations.  A recent description of the
model options can be found in Dudhia (2000).

 The model was configured with 23 vertical σ
layers, specified so as to give higher resolution
near the surface and lower resolution near the
model top at 100 mb.  As shown in Figure 1,
domain 4  (90 × 90 points) and domain 3 (55 × 55
points) have 4-km and 12-km horizontal spacing,
respectively. Model output-cloud analysis
comparisons were confined to these two nests.
The microphysics scheme selected for this study
simulates precipitation events with accuracy
comparable to, but executes faster than, more
sophisticated research-grade schemes (Schultz
1995).  The Schultz microphysics
parameterization has prognostic equations for 5
water species (cloud liquid, cloud ice, rain, snow,
precipitation ice). The small horizontal grid
spacing of domain 4 requires that convection be
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explicitly resolved for that nest.  The convection
scheme for the outer domains follows Grell
(1993).  The radiation scheme used for this study
explicitly models the interaction between
radiation and cloud species (Dudhia 1989).  The
Hong-Pan boundary-layer parameterization
(Hong and Pan, 1996), which models non-local
counter-gradient diffusion, represents the
boundary layer for these runs.

3. SATELLITE ANALYSES

Satellite analyses for this study were derived
from a multi-spectral cloud-detection algorithm
(Alliss et. al., 2000) applied to Geostationary
Operational Environment Satellite (GOES) 8, 9,
and 10 imager data.  For each satellite pixel and
channel, the difference between the GOES
brightness temperature and the clear-sky
background (CSB) is computed.  Season- and
location-dependent difference thresholds are
then applied to each difference. If the pixel
passes the time-dependent combination of
threshold tests, then it is tentatively labeled as
cloudy. A series of tests are then applied to
eliminate false-cloud signatures, which result due
to soil emissivity (soil type), snow cover, or
terrain. This defines the composite cloud
determination for that pixel and time. The
horizontal resolution of this cloud analysis is 4
km. The main weakness of this algorithm is found
during the transition between day and night (night
and day) when the CSB tends to be too warm
(cold). This can lead to an over / underestimate in
clouds of up to 5 %.

4. PROCEDURE

The model was initialized with 00-UTC or 12-
UTC analyses and run for 24 h twice per day
during February 2000.  Initial and boundary
conditions were derived from analyses and
forecasts, respectively, from the National Centers
for Environmental Prediction (NCEP) ETA model.
No assimilation or warm-start procedures were
adopted for this initial experiment.  The cloud
water and cloud ice fields were therefore
initialized to zero.  All model output fields were
written out hourly.

A statistical analysis was conducted as
follows.  The cloud optical depth for MM5
simulations was computed from

        IWPaLWPa il +=τ , (1)
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where LWP and IWP are the liquid and ice water
paths in units of kg m-2. The absorption
coefficients for cloud water al and cloud ice ai
were specified as 150 m2 kg-1 and 50 m2 kg-1

based on Stephens (1978).  Following Manning
and Davis (1997), rain, snow, and precipitating
ice species were ignored in the calculation of
cloud optical depth, because these fields
generally occur beneath layers that have
considerable cloud ice and water.

The nominal sensitivity of the GOES imager is

τ = 0.1. That is, the GOES imager senses

approximately 50% of the clouds with τ = 0.1
(Menzel, et. al., 1992).  To be consistent, MM5
grid columns with 1.0≥τ were designated as
“cloudy” grid columns.

MM5 and GOES use lambert conformal map
projection and latitude-longitude grid,
respectively, and so the MM5 and GOES grids
are offset.  Each grid column from MM5 was
therefore compared with the GOES pixel with
which it shared the most common area.  Two
statistical measures were then calculated based
on a direct pixel-to-pixel comparison.  The bias B
is defined as

                   afB −≡ , (2)

where f and a  are the mean number of grid

cells forecast and observed to be cloudy,
respectively.  For our definition of bias, a perfect
score is zero; a positive bias indicates more
cloud was forecast than observed.  The threat
score T is defined as
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where C is the total number of grid boxes
correctly forecast to be cloudy, F is the number
grid boxes forecast to be cloudy, O is the number
of grid boxes observed to be cloudy, and ε is the
expectation which is given by F*O/N.  N is the
total number of grid columns.  The threat score
rewards successful forecasts of rare events, but
penalizes for over-forecasting.  A perfect score is
one, while zero signals no skill.

5. RESULTS

The model exhibited little skill during the first
six hours of the simulations.  During this initial
period, the probability that cloud fields simulated
by MM5 were observed was approximately 55%.
The poor performance resulted from cloud
condensate fields that were initialized to zero.
During this initial “spinup” period, the model
generated cloud fields that were not necessarily

realistic. A large literature exists on the subject of
model initialization (e.g. Gustafsson et al., 1997).

Figure 2 shows the probability that cloud was
observed, as a function of MM5 cloud optical
depth.  The left (right) panel gives the result
obtained using 6-h cloud optical depth forecasts
computed from the 00-UTC (12-UTC) MM5 runs.
The probabilities were computed using 10,000
bins for cloud optical depths in the range
between 0 and 10.

For τ > 0.1, the probability of cloud (POC)

was generally greater than 50%.  For τ >1, the
POC exceeded 80% for the 12-UTC runs, while
the POC hovered between 50% and 60% for the
00-UTC runs.  This difference relates to the daily
cycle of cloud forcing.  The forcing tends to be
stronger during the day, and so the 12-UTC runs
generated realistic cloud fields within a relatively
short period.  At night, the forcing is weaker and
more terrain-dependent, and so forecast cloud
fields were not always realistic.

This assertion is supported by the left panel
of Figure 3, which shows that the 00-UTC 18-h
cloud forecasts were much more accurate than
the 00-UTC 6-h cloud forecasts.  The cloud fields
self-corrected due to the much stronger forcing
that occurs during the day.  In this case, the POC

for τ > 3 was 70% or more.  Note, however, that
the vast majority of clouds simulated by MM5 had
optical depths less than one.

Consider now the right panel of Fig. 3.  The
accuracy of cloud forecasts was very good (75

%) for clouds with τ > 3, but the POC for thinner
clouds decreased.  During the MM5 12-UTC
simulations, the cloud fraction increased steadily
from zero to 0.595 at 24 h into the simulation.
The GOES cloud analyses indicate a moderate
diurnal cycle during February 2000 with clouds
over domain 4 decreasing from a maximum cloud
fraction of 0.41 at 21 UTC to a minimum of 0.31
at 10 UTC.  The model lacks a realistic diurnal
cycle of clouds, which explains the reduced POC
for thin cloud in the right panel.  The thick clouds
were usually produced by strong dynamic forcing,
and so were less affected by the diurnal cycle.

The model’s poor performance suggested
that we should test different microphysics
schemes to determine which performs best for
this region.  We calculated forecast statistics for
the simple ice, mixed phase, Goddard GSFC,
and Reisner microphysics parameterization
options of MM5.  The simple ice scheme includes
cloud ice, cloud water, rain, and snow, but
excludes supercooled water.  The mixed-phase
scheme allows liquid and ice to coexist, but lacks
graupel and riming processes.  The Goddard
microphysics scheme (Tao et al., 1993) includes
a prognostic equation for graupel. The Reisner
graupel scheme is based on the mixed phase
scheme, but adds predictive equations for
graupel and ice number.  Details of these



schemes (except Goddard) may be found in
Reisner et al. (1998).  Due to the large amount of
processing required, we performed 18-h
simulations twice per day for the first week of
February only.

Figure 4 shows that persistence beats the
model during the first 5 hours.  This is not
surprising given that the model must spin up its
cloud fields during this initial period.  The Reisner
scheme achieved the highest threat score (0.4) at
9 h, but fell thereafter so that it beat only
persistence after 13 h. The Schultz scheme
performed best between 12 h and 16 h, but its
score was approximately equivalent with those of
simple ice, mixed layer and Goddard during the
last two hours of the simulation.

Figure 5, which shows the bias for each
microphysics parameterization as a function of
forecast hour, gives insight into the behavior of
the schemes in Fig. 4.  The bias was initially
negative for each scheme’s runs (with cloud
condensate initialized to zero), but it increased
until the forecasts for each scheme significantly
overestimated cloud.  During the initial four
hours, the cloud field adjusted to a bias that was
steady for the next 4-6 hours. The bias then
increased at a rate of 10 % h-1 for three hours,
after which the trend steadied.

Although runs with the Schultz scheme
followed the pattern just described, its bias
remained negative throughout much of the
forecast period.  This tendency resulted in
greater skill between 12 h and 16 h.  After its bias
increased to 0.2 (equivalent with the other
schemes), runs with the Schultz scheme
displayed no greater forecast skill than other
runs.  Similarly, runs using the Reisner scheme
displayed the most skill between 5 h and 11 h,
after which time the bias passed through 0.2.
The forecast performance of the various
schemes therefore depended on their cloud
biases as a function of forecast hour.

Manning and Davis (1997) found similar
results in their verification of WISP94 MM5 cloud
forecasts.  Real-time forecasts were generated
twice per day with MM5 configured to use the
Reisner microphysics parameterization on grids
with 60-km and 20-km spacing.  Manning and
Davis attributed the cloudy bias in MM5 to the
use of Fletcher’s (1962) formula for ice nuclei
number concentration by the Reisner scheme, to
a mid-level cold bias induced by the application
of a radiative temperature tendency, and a low-
level cold bias induced by excessive moisture
availability at the surface.  By using the Schultz
scheme and a detailed radiative transfer
parameterization, our experimental setup  should
have removed the first two factors cited by
Manning and Davis.  Further work will be
required to verify that the mid-level cold bias has
been removed and to quantify the sensitivity of
each scheme to surface moisture availability.

6. SUMMARY AND CONCLUSIONS

A set of NWP forecasts were generated twice
per day during February 2000 and evaluated for
forecast accuracy.  The results were decidedly
mixed.  Although the POC was generally greater
than 70 % for optically thick clouds, forecast
accuracy was found to depend on the length of
the forecast and the time of day in which the
forecast was initialized.  Cloud forecasts tended
to be highly accurate when the dynamical forcing
was strong.  Every MM5 microphysics
parameterization tested was found to generate
more clouds than observed.  More work is
required to isolate the cause of the cloudy bias in
MM5.
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Figure 1:  The domain setup for the MM5 February runs. Domains 1, 2, 3, and 4 have 108-, 36-, 12-, and 4-km grid
spacing, respectively.

Figure 2:  The probability of cloud observed in the GOES analysis as a function of cloud optical depth computed from
MM5 6-h cloud water and cloud ice fields.  The left and right panels are for 00 UTC and 12 UTC February simulations,
respectively.

Figure 3:  Same as Figure 2, except cloud optical depth is computed from MM5 18-h cloud water and ice.



Figure 4: The threat score as a function of forecast hour for 5 microphysical schemes and for persistence.  The dashed-
dotted curve denotes the simple ice scheme, the dashed curve denotes the mixed phase scheme, the solid curve denotes
the Reisner scheme, the curve with triangles denotes the Goddard scheme, the curve with circles denotes the Schultz
scheme, and the curve with squares denotes persistence.

Figure 5: The bias (Eqn 2) as a function of forecast hour for 5 microphysical schemes and for persistence.  The dashed-
dotted curve denotes the simple ice scheme, the dashed curve denotes the mixed phase scheme, the solid curve denotes
the Reisner scheme, the curve with triangles denotes the Goddard scheme, the curve with circles denotes the Schultz
scheme, and the curve with squares denotes persistence.


