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1.  INTRODUCTION 
 
In addition to the resources in the standard 
observing network, supplemental observations can 
be used to help generate a new analysis for a 
forecast model.   Additional observations, collected 
for example by a dropsonde equipped aircraft, may 
improve predictions of potentially significant 
weather (Tuleya and Lord 1997, Szunyogh et al. 
1999, Szunyogh et al. 2000).   Suppose the three-
day forecast for the west coast of the United States 
was for heavy rain.  Observations might be taken 
upstream from the Pacific coastline to help improve 
that forecast.  Finding the particular location for 
observations that minimize forecast error variance 
depends on estimating the error variance in the 
analysis field, and then propagating this error 
variance forward in time to predict a forecast error 
variance, and then see how additional observations 
can reduce this error variance (Bishop et al, 2001). 
 
The error statistics for the first guess field currently 
used in most operational centers parameterized 
from a long time series of previous forecasts, and 
are generally spatially homogeneous and 
temporally invariant (Parrish and Derber, 1992).  
These fixed statistics cannot account for the 
differences between atmospheric conditions.  For 
example, the error statistics near a cold front are 
likely to be very different to those in the center of a 
high-pressure system.  To produce the analysis 
with the smallest error variance, the optimal error 
statistics are needed. Given the shortcomings of 
the error statistics currently used in many 
operational centers, better-suited error statistics are 
proposed.  This focus of this research is to use 
ensembles to generate error statistics, and then 
apply these error statistics to data assimilation and 
to the selection of sites for supplemental 
observations. 
 
Having the error statistics of the first guess field, 
and by also knowing the location and error statistics 
of the components in the standard  
observational network can estimate the analysis 
error variance.  The estimate of analysis error 
variance does not require that observations actually 
be taken; it only requires the error statistics that are 
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used to make the analysis.  By using ensemble 
members to produce the error statistics for the first 
guess field, this analysis error variance can be 
propagated into the future by using the same 
ensemble members valid at a later time to 
represent the uncertainty of the future forecast.  
Further, these estimates of error variance are 
related to the errors on a particular day, rather than 
an average prediction error. 
  
Having taken observations using guidance from 
ensemble based error statistics, predicting the 
impact the observations is needed to ensure that 
the goal of supplemental observations, namely the 
improved prediction of a potential weather event, is 
likely to be accomplished.  The impact of adaptive 
observations on the analysis and forecast can be 
estimated using the ensemble members at the 
observation time and the verification time.  
However, as with any error statistics estimation, the 
ensemble-based calculation will not be perfect.  
The ensemble based error statistics can be 
corrected using observed data from a later time to 
provide a quantitative measure of the impact of 
observations on forecasts.  
 
It is this quantifying of the expected impact of the 
targeted observations that could have the greatest 
benefit in the long run.  Suppose an agency wanted 
to take extra observations to improve a forecast.  If 
the ET KF could be used to predict the reduction in 
forecast error variance, then the people charged 
with deciding to make the flight or not would be able 
to perform a cost benefit analysis of sending out the 
plane (or other data collection device).  Not only 
would they know the best place to fly, they would 
know whether or not it would be worth it to make 
the flight, if the improvement would justify the cost. 
 
2.  TARGETING THEORY 
 
The ET KF, in addition to data assimilation, can 
also be used to predict the impact of observations, 
and thus can be used as a way of selecting data-
sensitive areas in which to take supplemental 
observations.  The ET KF can estimate the 
reduction in error variance from the standard 
observational network.  The formulation of the 
analysis error covariance matrix is given by: 
  
P(tf,ti|Hq) = 
P(tf,tf) - P(tf,ti)Hq

T(HqP(ti,ti)Hq
T+R)-1HqP(ti,tf) 

      
Where P(tf,ti|Hq) is the analysis error covariance 
matrix given observations in some observing 



network 'q' and P(tf,ti)Hq
T(HqP(ti,ti)Hq

T+R)-1 HqP(ti,tf), 
rewritten as S(tf,ti|Hq), is the reduction in error 
variance resulting from observations at sites in the 
observational network 'q'.  P(tf,tf) is the prediction 
error covariance matrix at the verification time, and 
is equal to XfXf

T, P(ti,ti) is the prediction error 
covariance matrix at the observing time, and 
similarly is equal to XiXi

T.  For the prediction of the 
impact of observations on an analysis, none of the 
climatological covariances are used.  This is to 
reduce calculation time.  For any particular 
observing network, the manipulations of B can be 
calculated once and stored.  However, for non-fixed 
observational networks, the calculations involving B 
are too time consuming to be  practical.  To find the 
further reduction in the prediction error when more 
observations are taken, the following equation is 
used: 
      
S(tf,ti|Hr) =  
P(tf,ti|Hq)Hr

T(HrP(ti,ti|Hq)Hr
T+R)-1HrP(ti,tf|Hq) 

      
Where 'r' is the potential site of an additional 
observational network.  The location for which the 
trace of S(tf,ti|Hr) is the largest is deemed as the 
optimal location for an observation, as it has the 
greatest reduction in error variance.  Thus, it is 
expected that this location with produce a new 
forecast with the greatest reduction in forecast 
error.  In experiments for this research, each grid 
point on the east side of the model domain is 
considered a potential observational network, and 
each is checked to see which has the greatest 
value of S(tf,ti|Hr).  Using the given formulation for 
S(tf,ti|Hr), the verification region for this 
supplemental observation is the entire model 
domain.  This can be changed by maximizing not 
S(tf,ti|Hr), but HvS(tf,ti|Hr)Hv

T, where Hv maps out the 
verification region.  Field experiments generally do 
have verification regions associated with areas of 
potential heavy rainfall, high winds, or other 
extreme weather.   
 
Having selected the optimal ensemble generation 
technique and the best mix of flow-dependent and 
climatological covariances, a 99-day model run will 
be done.  On each day, the ET KF will be used to 
predict the expected reduction in global vorticity 
error from the standard observing network as well 
as the optimal location  for taking two additional 
observations.  The observations will be made 24 
hours after the time of ensemble generation, 
verifying 48 hours from ensemble generation.  Two 
increments to the analysis will then be made, one 
using the standard observational network and the 
other using the standard network plus two targeted 
observations.  The signals  these increments make 
at both the analysis time and at the forecast time 
will then be compared with the ET KF predicted 
reduction in error variance, with the belief that a 
linear correlation between them exists.  Having 
formed a statistical correlation, the ET KF predicted 

signal will be adjusted, and then compared to the 
actual reduction in error to see if the ET KF can be 
used to quantitatively predict the impact of 
observations on forecasts. 
 
 
With predictions of the reduction in forecast error 
made from the ET KF, the observation locations 
chosen are sampled, and the data assimilated 
using 3D-var, the ET KF, or the hybrid ensemble 
Kalman filter / 3D-var scheme.  At both the 
observation time and verification time, the 
differences between the model vorticity fields 
generated with supplemental observations and 
without the additional observations are made.  The 
difference fields are then compared to the predicted 
impacts of the observations.  From this comparison 
will come an adjustment to the ET KF predicted 
signal.  This adjusted ET KF prediction of the 
reduction in error variance is compared to the 
improvement in vorticity forecasts resulting from the 
supplemental observations.  From that comparison, 
it will be deduced whether the ET KF can predict, 
quantitatively, the reduction in forecast error 
resulting from the assimilation of targeted 
observations. 
 
3.  EXPERIMENTAL PROCEDURE 
 
For each analysis cycle, the following was done:  
First, using the ETKF, the expected signal from a 
16, 36, or 72 member observational network was 
calculated.   After this, signal variance as a function 
of observation site was computed.  From this, the 
gridpoint on the eastern side of the model domain 
which had the greatest signal variance, and hence, 
the greatest reduction in expected error, was 
chosen as the first supplemental observation site.  
The further reduction of error variance resulting 
from this observation was combined with the 
reduction from the standard network to yield a new 
analysis error variance.  As before, the signal 
variance was calculated as a function of observing 
site, and the site with the greatest signal variance 
was chosen as the second site for a supplemental 
observation. 
 
The theory behind the selection of an observation 
site using the signal variance is described in Bishop 
(2001).  One addition to this theory is the use of a 
verification region.  In Bishop (2001), the optimal 
locations were found which reduced the global 
enstrophy error at the verification time.  In this 
experiment, the sites were selected based on a 
verification region. 
 
For this experiment, a 64-member ensemble was 
constructed each day and integrated forward 48 
hours.  The ensemble consisted of 64 random 
samples of the top 256 eigenvectors of the 
Parrish/Derber B-Matrix (Parrish and Derber, 1992).  
As shown in Etherton et al (2002), the number of 



ensemble members was chosen at 64, rather than 
16, because having only 16 ensemble members 
yielded a poor estimate of the variance. For 
purposes of quantification, it is important that the 
spread of the ensemble (the trace of XXT, where X 
is a matrix of ensemble perturbations) is roughly the 
same as the magnitude of the first guess error.  To 
accomplish this, the magnitude of the initial 
perturbations is rescaled using a maximal likelihood 
estimation as in Dee(1995). 
 
4.  RESULTS 
 
Several experiments were done with differing 
numbers of observations in the standard observing 
network, and with different data assimilation 
schemes.  Results in the figure shown at the right 
are for a 16 observation standard observing 
network (the sparsest of the ones used) and for a 
hybrid 3D-Var/ET KF data assimilation scheme. 
 
Estimated Signal Versus Actual Signal 
 
The first step in the quantification of targeted 
observations was to make the correlation between 
the expected signal and the actual signal.  This was 
done by taking the values at each gridpoint (1024 
per day) over days 2 through 98 of the 99 day run 
(day 1 was omitted because the re-scaling of the 
ensemble could not happen until day 2), for a total 
of 99328 realiziations.  These were then binned into 
groups of 2048 in order of expected signal size.  
These binned values were then compared to their 
counterparts in actual signal. 
 
The results show that the ET KF does a very good 
job of predicting the signal which targeted 
observations will have on a forecast.  The points 
form nearly a perfect regression, with an R2 value of 
greater than 0.99.  Values are also always 
monotonicly increasing as a function of expected 
signal.  It was seen for the other observing 
networks and other data assimilaton schemes that 
the correlation between predicted signal and actual 
signal was very strong, though a bit less strong 
when 3D-Var was used for the data assimilation 
scheme. 
 
If the ensemble spread were always a direct match 
to the size of the error of the first guess field, it 
would be expected that the expected signal from 
the ETKF and the actual signal from the 
observational network would have a 1-to-1 
correspondence.  It is noted that the value is more 
like 3-to-1 than 1-to-1.  The reason for this is that 
the ETKF predicts the reduction in error variance 
which from the standard network.  It is then the 
further reduction from this reduced error variance 
that is compared to the actual signal. However, 
there is a large model error in this system, as the 
vorticity relaxation for the model is different than the 
one used for the truth/nature run.  This error is NOT 

reduced by the standard network, but the ETKF 
presumes that it has been, as the model error term 
is not in the formulation.  Thus, the actual impact of 
targeted observations is greater than expected.  
 
 

The quantification o f targeted ob servations 
using a 16 observation standard network, 
values on ly in the “ high signal” regions,  a 

hybrid 3d-Var/ET KF data ass imilation scheme, 
and b ins of 2048 samples. 
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Adjusted Predicted Signal versus Actual Reduction 
 
Given that there is some sort of correlation between 
the predicted signal and the actual signal, a next 
step in assessing the benefit of the targeted 
observations is to see how much better an analysis 
or a 24-hour forecast is with their inclusion.   
 
Once again, values were binned into groups of 
2048, and plotted.  A linear regression was then 
applied.  Results show that in contrast to the 
prediction of signal, the prediction of reduction of 
error is not as solid.  Note that the regression line is 
not as good a fit to the data as was the case in the 
prediction of signal.  Further notice that the values 
of actual reduction are not monotonicly increasing 
as a function of predicted reduction, especially 
when the predicted reductions are small.   
 



A potential reason that the actual improvements are 
not as well correlated to the ET KF predictions of 
improvements has to do with the verification region, 
or more precisely, the lack of one.  The ET KF has 
the tendency to produce actions at a distance from 
where the observations are taken.  It is seen that 
for small values of predicted reduction, the actual 
reduction can increase or decrease.  These small 
values of predicted reduction occur far from where 
the main feature of interest is.  To try to isolate this 
effect, values for correlation were limited to a “high 
signal region”.   
 
 

The quantification o f targeted ob servations 
using a 16 observation standard network, 
values on ly in the “ high signal” regions,  a 

hybrid 3d-Var/ET KF data ass imilation scheme, 
and b ins of 2048 samples. 

 

y = 3.0308x + 0.1106

R2 = 0.9897

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1

Expected Signal

A
ct

ua
l S

ig
na

l (
x

48
24

 -
 x

48
00

)2

y = 0.3679x + 0.0066

R2 = 0.9424
0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4

Expected Reduction (Adjusted ETKF S)

A
ct

ua
l R

ed
uc

tio
n 

(d
48

-H
x48

24
)2 

- 
(d

48
-H

x48
00

)2

 
Results for the comparison of actual signal to 
expected signal are similar to when the entire 
domain was used as the “verification region”.  The 
improvement is in the comparison of expected 
reduction to actual reduction.  Values are now a bit 
more in line with the regression line, and have a 
greater look of increasing monotonically. 
 

The points still do not lie all along the line.  The 
points appear to lie more in a parabolic shape than 
a straight line, with values of actual reduction 
starting to asymptote for increasing values of 
expected reduction.  It is possible that there is a 
quadratic relationship, but there are other 
possibilities. 
 
In this experiment, there is a regime change in the 
dynamics in the model.  Over the first 30 days, the 
flow is characterized by four coherent vortices and 
one broad ribbon of vorticity.  In the last 70 days, 
the flow is more zonal, with two broad vorticity 
ribbons.  These two different flow states may have 
an effect on the correlations between predicted 
signal and actual signal.  It is possible that the 
strong localized vorticity errors in the first 30 days 
make a significant change in the largest set of 
binned values.  This largest bin has both the 
greatest x-value and greatest y-value of the points, 
and thus has a high value of influence on the 
regression. 
 
Results from this work are still preliminary at the 
time of writing, but there seems to be reason to 
believe that the values in this top most point are 
biased from errors in the early part of the model 
run.  It has been suggested that there should be 
two separate regression lines, one for data from 
before the regime change (days 2-30) and one for 
after the regime change (days 31-99).  This will be 
investigated in the weeks ahead. 
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