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1. INTRODUCTION

As remotely sensed data become an increasingly
dominant source of the information provided to op-
erational forecast models through assimilation pro-
cedures, the related problems of correlated or biased
measurement, error and the poor numerical condi-
tioning of the formal inversion by the assimilation
become increasingly severe. This paper will address
a unified approach to the treatment of measurement
bias and correlation through the use of ancillary
variables. The proposed treatment further inflates
the already large condition number intrinsic to the
analysis inversion problem but, by employing an
observation-space form of the analysis and adopting
an extension to the averaged block-matrix precon-
ditioners recently advocated by Daley and Barker
(2000) based on grouping the data into overlapping
small clusters, we expect to be able to achieve a
dramatic reduction in the condition number.

2. PRIMAL AND DUAL FORMS OF 3D-VAR

We adopt some notational suggestions of Ide
et al. (1993). The primal (e.g., grid or spectral
space) variational principle for 3D-VAR seeks the
particular model state, £ = z* that minimizes the
cost function £+ (z) defined by

L1(z) = La(z) + Ly(2), (1)

with
2L,(z) = (z-2")" B, (z - ), (2)

and
2L,(z) = (y—H(x) "R (y—H(z). (3)

H(z) denotes the nonlinear measurement operator
of true state z, to which we add error terms r to get
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actual observations . The covariances of errors r
form the matrix,

R=(rT). (4)

z, denotes the background field and B, is the
background error covariance, which we assume can
be expressed:

B, = CaCZ7 (5)

where C, possibly possesses more columns than
rows.
Expressing

2’ —z=C,v, (6)

we obtain a basic preconditioning of the primal
problem by solving it for v. Then, from the
minimizer, v®*, the proper analysis increment is
simply,
-z’ = —C,v". (7
The dual (observation space) variational prob-
lem seeks the solution to vector which is usually of
smaller dimensionality than the analysis increment
vector. It can be shown that an implicit representa-
tion of the dual problem, valid even in the presence
of significant nonlinearity of the operators involved,
is the minimization of:

Lo(f) = fY(R+ H,B,HY)f - 2f"d,  (8)

where
z* —z* = B,H!f, (9)

d=y— (H(=z") + H,(z" - z%)), (10)

and H, is the linearization of H,, provided the H,,
z" and d are frozen during the minimization. The
dependence of d on x is weak in the vicinity of the
analysis x,, so it can be re-evaluated periodically
in an outer iteration of the solution procedure and,
approximately,

d~d=y—Hz). (11)



Figure 1. Doubly periodic domain subdivided into boxes and
with data locations plotted

The common assumption that R is diagonal,
and that it can therefore be inverted trivially, is an
especially useful one to make for the dual problem
because it allows the R to be used as a basic
preconditioning operator, giving the same condition
number for the dual problem as obtained for the
basic preconditioned primal one (see Courtier 1997
and next section). Unfortunately, the diagonal
assumption for Ris often wrong for various reasons.

3. DATA WITH CORRELATED ERRORS

Instead of representing correlated data using
a non-diagonal R, we recommend an approach by
which the sources of correlation in the errors of
the data are, to the extent possible, identified and
incorporated as additional analysis variables. This
leaves a diagonal R that can be inverted and used for
basic preconditioning. The added correlated terms
are modelled as the product of white noise operated
upon by a filter which shapes the final correlation
structure.

y=H(z) + H,C;T+r. (12)

Here, 7 represents a white-noise random vector
((rr7) = I), C, the filter simulating the correlation
of error in time and/or space, and H, samples
the resulting correlated field of error at times and
locations that correspond to the actual observations
used. Components of residual error vector r now
become truly independent. Near the true solution,
the effective innovation now takes the form

d=H(z) — H(z") + H,C,v" + H.C,7+1 (13)

and we assume cancellation of the first two terms
on the right. Effectively, preconditioned analysis

increment, v, is augmented with components 7 and,
with substituted combinations,

¢ = [vT;TT] , (14)
H=[H,H,], (15)
c- (% &) (16)

we regain standard variational forms, with correctly
diagonal R. g is the new augmented preconditioned
analysis increment.

If we define the standard deviations matrix,

S=R?, (17)
and use it to rescale the innovations:

n=25"d, (18)
then the equations that connect the basic precondi-
tioned and augmented analysis increments g with g
o a= (I + M"M) 1My (19)

in the primal case, and:

_ agqT T -1
g=M (MM +I(y)) n (20)
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Figure 2. Convergence traces for an idealized iterative
analysis using the conjugate gradient method under various
preconditioning strategies: without special preconditioning
(solid); with a single block matrix preconditioner based on
clustering of data into groups each of four of the boxes of
Fig. 1 arranged 2 x 2 (dotted); with the averaged effect of
two block matrices formed by clusters as before but such
that a maximum overlap between partitionings is obtained
(long-dashed); with four optimally-overlapping patitionings
contributing their block matrix preconditioners to a four-way
average (short-dashed)



in the dual problem, where,
M=S"'HC, (21)

and I, and I, are identity operators in the
respective spaces of ¢ and . The equivalence of
condition numbers of the two forms is now plain
to see (Courtier 1997). However, the condition
numbers typically obtained (> 10?) are still much
larger than we would wish.

Our proposed formalism can be thought of as a
generalization, with possibly nontrivial correlations,
of the method of treating observational bias imple-
mented for satellite data used by Derber and Wu
(1999). By allowing the covariance R of the effec-
tive random observation error r to take a diagonal
form even when true data errors are correlated, a
significant simplification in the analysis procedure
is obtained. However, a hidden cost of this pro-
cedure is the invariably larger condition number of
the resulting problem, a consequence of the effective
errors r now being much smaller in magnitude than
they would have been in the conventional 3D-VAR
implementation. We are therefore obliged to pay
greater attention to the preconditioning aspects of
the analysis when the proposed modifications to the
3D-VAR formulation are adopted.

4. PRECONDITIONING BY CLUSTERING

The relatively trivial preconditioning, described
in the previous section, that results from the non-
dimensionalization of the problem using the opera-
tors at hand, is inadequate in practice, but an im-
provement would require the utilization of knowl-
edge about the particular structural regularities
typical of forecast background errors. One obvious
regularity, to which the purely algebraic manipula-
tions of the previous section are necessarily blind,
is the tendency for correlations in the error to de-
cay away to insignificance at a sufficient geographi-
cal separation. This feature was routinely exploited
in traditional Optimum Interpolation methods of
analysis (Gandin 1963) through the selection of only
nearby data in the analysis of each gridded value.
This structural regularity can be exploited also for
preconditioning the dual form of 3D-VAR, as shown
by Cohn et al. (1998). This involves grouping the
observational data into geographical clusters small
enough to permit the matrices of the restricted anal-
ysis inversion problems associated with each cluster
to be inverted directly. Daley and Barker (2000)
extend this technique by averaging the precondi-
tioning operations associated with two completely
different data groupings.

The value of these stategies, and a systematic
extension to larger numbers of overlapping group-
ings, can be nicely illustrated in a simple idealized
context of a scalar field with simple Gaussian forms

(@) (b) (c)

Figure 3. (a) Schematic example of a portion of a horizontal
tesselation using even-sides polygons. (b) Result of the
refinement rules applied to just one of the hexagons. (c)
Result of the refinement rules when applied to both adjacent
hexagons.

for the homogeneous covariances of background er-
ror on a two-dimensional doubly-periodic domain.
Fig. 1 shows the domain divided into boxes in each
of which is placed (randomly) an equal number of
observations. The background standard deviation
is taken to be ten times that of the data and the
characteristic size of the Gaussian covariance pro-
file is 1.5 times the box dimension. Fig. 2 shows
sample convergence plots with the conjugate gradi-
ents technique under four different preconditioning
strategies. The slowest convergence (solid line) is
obtained using the trivial non-dimensional scaling
preconditioning described in the previous section.
Constructing the data clusters from 2 x 2 arrange-
ments of boxes, the dotted line shows the small im-
provement in convergence when a single grouping of
this kind is used to prescribe the observation-space
preconditioner. As shown by Daley and Barker,
a substantial improvement is obtained by averag-
ing the preconditioning from two overlapping clus-

Figure 4. (a) Coloring rule applied to a tesselation by
even-sided polygons. Each polygon has a red nucleus (‘r’)
and alternating blue (‘b’) and green (‘g’) vertices. (b)
The corresponding triagulation with lines distinguished to
show which of the three possible partitionings by even-sided
polygons they belong to.



ters; here we have optimally overlapping of clusters
formed from 2 x 2 arrangements of boxes mutu-
ally staggered in both directions by one box-size.
The convergence is shown for this case by the long-
dashed line. Finally, we take the average of the four
possible clusterings based on 2 x 2 squares tiling
the domain, and show the resulting convergence by
the short-dashed line, which is the best result. The
condition numbers displayed in Fig. 2 range from
about 1000 without clustering to about 12 with the
four-cluster averaged preconditioner.

In general, we never have such a uniformly
dense distribution of the data. It is possible to
define a systematic strategy by which general data
can be grouped into a small number of overlapping
tilings of the domain, so that each tile contains
roughly the same amount of data and no datum
lies near the tile boundary in all of the groupings
using only three overlapping groupings. This
scheme should provide the analogue, for irregular
data, of the best of the methods illustrated in
Fig. 2. The construction can occur as the end
state of a progression of refinements, at each stage
of which a primary decomposition of the domain
involves even-sided polygons. Fig. 3(a) shows
such an arrangement of hexagons. Initially, the
domain is coarsely decomposed. If warranted
by a sufficient quantity of the data it contains,
a polygon may be subdivided according to rules
that maintain the even-sided property. From a
designated central point of the original polygon
(the star in Fig. 3(a)) take the midpoints of the
segments that link it with the polygon’s vertices
and create a similar but half-size polygon together
with peripheral quadrilaterals, as in Fig. 3(b).
Should two or more of the neighboring original
polygons be subdivided in this way, merge the pairs
of quadrilaterals from the adjacent parent polygons,
as shown in Fig. 3(c), to form a single new hexagon
instead.

These rules of refinement can be continued
for as many generations as required to equitably
partition the data. Finally, we may ‘color’ the
central points of each polygonal tile ‘red’ and their
vertices alternately ‘blue’ and ‘green’, as shown
in Fig 4(a). But now the ‘blue’ points may be
regarded as the central points of a secondary tiling
of the domain, whose vertices are alternately ‘red’
and ‘green’. Likewise, the ‘green’ points define
center for a third set of tiles. The boundaries of
the three co-existing groupings are shown in Fig
4(b) for this example. This three-way overlapping
tiling construction offers a way of generalizing
the precondition strategy proposed by Daley and
Barker (2000) that ensures each datum lies well
inside at least one of the polygonal tiles.

5. DISCUSSION AND CONCLUSION

Having set out a unified formalism for the
treatment in 3D-VAR of biased or correlated
measurement errors, we have also pointed out
that a consequence of excising the correlated error
components and effectively assigning them to an
augmented set of ‘analysis’ variables is that the
condition number of the analysis problem increases
substantially. In order to achieve a satisfactory
preconditioning, it becomes necessary to exploit
the structural regularity inherent in a background
error field, for example, by grouping the data into
manageable clusters from which preconditioning
operators can be calculated by direct inversion.
To this end, we propose a generalization of the
method of Daley and Barker (2000), which is
demonstrably effective in reducing the condition
number. At present this preconditioning strategy
seems restricted to observation space forms of the
analysis. It remains to be seen whether analogous
methods might apply in model state space.
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