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1 Introduction

The estimation of forecast error covariance is a
principal task of tuning an atmospheric data assimi-
lation system. The main sources of forecast error can
be divided into inherent model error and the error as-
sociated with uncertainties in the initial data. Both
uncertainties evolve in a numerical weather predic-
tion model during the assimilation cycle so that the
associated forecast error covariance is not constant
but varies with respect to time and space depending
on the flow.

There are several ways to estimate forecast error
covariance in an atmospheric data assimilation sys-
tem. Singular vectors (SVs), the most rapidly grow-
ing perturbations over a specified time period for a
prescribed norm in a given model, can be used to
construct a time and space-dependent forecast error
covariance matrix. Statistical methods like the max-
imum likelihood method or generalized cross valida-
tion (Wahba et al., 1995) may also be used to estimate
the forecast error covariance. As a data assimilation
algorithm, the Kalman filter can explicitly calculate
the forecast error covariance as part of the data as-
similation algorithm.

In this presentation the flow dependent forecast
error covariance calculated using singular vectors will
be compared with the forecast error covariance calcu-
lated directly in an idealized framework. Since singu-
lar vectors are norm (metric) dependent (e.g., Palmer
et al., 1998), the most appropriate norm to determine

singular vectors in constructing the forecast error co-
variance will also be investigated.

2 Experimental framework

2.1 Model

The model used is a zonally periodic, quasi-
geostrophic (QG) gridpoint channel model on a beta
plane. The model was developed at NCAR and has
been used in several studies including Rotunno and
Bao (1996), Morss (1999), and Hamill et al. (1999).
The model variables are potential vorticity in the in-
terior and potential temperature at the upper and
lower boundaries. The main forcing is a relaxation
to a specific zonal mean state. There is no orography
or seasonal cycle and it has fourth order horizontal
diffusion and Ekman pumping at the lower boundary.
Stratification is constant and the tropopause is fixed.

The domain of the model is 16000 km in circum-
ference, 8000 km in channel width and 9 km in depth.
The resolutions are horizontally 250 km, vertically 5
levels. More specific description of the model can be
found in Morss (1999).

2.2 Data assimilation algorithm

A three-dimensional variational data assimilation
algorithm (3DVAR) developed for the above QG
channel model by Morss (1999) is used. Analysis
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in 3DVAR can be produced by minimizing the cost
function which is a combination of forecast and obser-
vation deviations from the desired analysis, weighted
by the inverses of the corresponding forecast and ob-
servation error covariance matrices.

J =
1
2

[xTB−1x + (Lx− y)T (F +O)−1(Lx− y)]

(1)

where x is an N component vector of analysis incre-
ments, which is the distance between the analysis and
the background field. B is theN×N forecast error co-
variance matrix. O is the M ×M observational error
covariance matrix. F is the M×M representativeness
error covariance matrix. L is a linear transformation
operator that converts the analysis variables to the
observation type and location. y is an M component
vector of observational residuals. N is the number of
degrees of freedom in the analysis. M is the number
of observations. By setting the derivative of J equal
to 0, and rearranging :

[I +BLT (F +O)−1L]x = BLT (F +O)−1y (2)

The 3DVAR solves Eq.(2) at each assimilation
time to obtain the analysis increments x.

2.3 Forecast error covariance

Given a linear model, the final stage of the model,
ψft , can be obtained by the linear integration of the
initial state, ψa0 :

ψft = Pψa0 (3)

where P is the tangent linear model of the nonlinear
QG model. The forecast error covariance matrix can
be defined as,

B = E[ψ′ψ′
T

] = E[(ψ − E[ψ])(ψ − E[ψ])
T

] (4)

where ψ′ is error or perturbation and E[·] denotes
the expectation operator. The time evolution of the
total error is the sum of the dynamical growth of the
initial error and the model error.

ψ′ = Pψ0
′ + ψ′′ (5)

where ψ′′ is model error. Substitution of Eq.(5) into
Eq.(4) yields :

B = E[(Pψ′0 + ψ′′)(Pψ′0 + ψ′′)T ]

= PE[ψ′0ψ′0
T

]PT + E[ψ′′ψ′′
T

]
= PAPT +Q (6)

where A = E[ψ′0ψ′0
T

] is analysis error covariance ma-
trix and Q = E[ψ′′ψ′′

T
] is model error covariance

matrix.
By perfect model assumption Q is zero and the

forecast error covariance B becomes :

B = PAPT (7)

2.4 Singular Vectors

Because of the rapidly growing property of SVs,
they have been used to :

• study the instability properties of the atmo-
sphere-ocean system,

• construct the initial ensembles to produce en-
semble prediction of ECMWF,

• adaptive (or targeting) observations to detect
regions of large sensitivity to small perturba-
tions, and

• construct the eigenvectors of the forecast error
covariance matrix for the end of the optimiza-
tion interval.

SVs can be calculated by maximizing the final am-
plitude of the perturbation subject to the constraint
that the initial perturbation be of unit amplitude for
a specified metric. The final amplitude may be rep-
resented by the cost function J as follows :

J(ψ′0) = (Pψ′0)T (Pψ′0) (8)

The constraint is ψ′0
T (A)−1ψ′0 = 1 and where A

is the analysis error covariance at the initial time. By
the Lagrange multiplier method,

L = (Pψ′0)T (Pψ′0)− λ(ψ′0
T (A)−1ψ′0 − 1) (9)

Differentiating Eq.(9) with respect to ψ0 and
equating that derivative to zero yields :

PTPψ′0 = λ(A)−1ψ′0 (10)



The formulation of Eq.(10) can be related to that
of Eq.(7) by calculating eigenvectors of Eq.(7).

PAPT y = λy (11)

By rearranging and using y = Pψ′0, Eq.(11) be-
comes the exactly same form of Eq.(10). Therefore
the time evolved SVs can be used to efficiently con-
struct that part of the forecast error covariance asso-
ciated with the uncertainty of initial data (Ehrendor-
fer and Tribbia, 1996).

The Lanczos algorithm was used to calculate SVs
for the QG channel model and adjoint of the tangent
linear version of the QG channel model was devel-
oped.

3 SVs for different norms

While SVs consistent with the forecast error co-
variance may be calculated based on the initial analy-
sis error covariance metric (Barkmeijer et al., 1998),
several other norms including the potential enstro-
phy, L2, kinetic energy, and total energy have been
considered in the predictability studies since the ac-
tual analysis error covariance is not known.

In this study the potential enstrophy, L2 and to-
tal energy norms are used to approximate the analysis
error covariance norm to estimate forecast error co-
variance. The SVs are calculated for a time varying
basic state.

3.1 Potential enstrophy norm

The potential enstrophy (square of the distur-
bance QG potential vorticity) of QG model in dis-
crete form is :

Q =
1
2

L+1∑
l=1

M+1∑
m=1

N∑
n=1

q′
2

+
1

2S

L+1∑
l=1

M+1∑
m=1

(θ′2n=0 + θ′
2
n=N+1) (12)

where S is static stability and l,m, n are indexes of
x, y, z grid points respectively. L,M,N are corre-
sponding numbers of grid points for x, y, z.

The most rapidly amplifying SV in the poten-
tial enstrophy norm for 6 hour optimization time is

shown in Fig.1. The structure of SV is quite zonal.

Figure 1: Horizontal cross-section of the leading SV
streamfunction in potential enstrophy norm at mid-
dle (N=3) of the domain for 6 hour optimization time

3.2 L2 norm

The square of the disturbance of streamfunction
of QG model in discrete form is :

L2 =
L+1∑
l=1

M+1∑
m=1

N+1∑
n=0

ψ′
2 (13)

The leading SV in L2 norm of 6 hour optimization
time for the same starting time with SV in potential
enstrophy norm is shown in Fig.2. The leading SV in
the L2 norm has more horizontal structure compared
with SV calculated for the potential enstrophy norm
in Fig.1.

Figure 2: Horizontal cross-section of the leading SV
streamfunction in L2 norm at middle (N=3) of the
domain for 6 hour optimization time



3.3 Energy norm

The energy of disturbance in QG model can be
represented in discrete form as follows :

E =
1
2

L+1∑
l=1

M+1∑
m=1

N+1∑
n=0

(ψ′x
2 + ψ′y

2 +
1
S
ψ′z

2) (14)

SVs have not yet been calculated for the energy
norm which is the most frequently used norm for pre-
dictability studies.

4 Conclusion and future work

SVs calculated for QG channel model show dif-
ferent structures with different metrics. SVs in the
potential enstrophy norm show large scale and zonal
structure while those in the L2 norm show smaller
and localized structure. These results are similar to
results found in the Eady model (Kim and Morgan,
1999).

Until now we have written the adjoint code and
SVs calculation routine for QG channel model and
looked at the characteristics of SVs based on dif-
ferent norms. In the presentation the flow depen-
dent forecast error covariance calculated using singu-
lar vectors based on several metrics will be compared
with the forecast error covariance calculated directly
in 3DVAR since we know what the truth is in this
idealized framework.
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