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1. Introduction

Life cycles of certain mesoscale phenomena are
intimately connected to the larger-scale environ-
ment in which they are embedded. For example,
vertical wind shear and thermodynamic profiles
influence the character and motion of severe con-
vection. Skillful predictions of mesoscale events
using a limited-area model (LAM) requires accu-
rate prediction of the larger scale flow.

It is well known that predictive skill is limited due
to the natural growth of errors resulting from im-
perfect analyses. Specifically, predictability theo-
ries ascribe an inverse relationship between wave
number and time limits of predictive skill (Lorenz,
1969). In contradiction, several predictability ex-
periments using LAMs report little or no error
growth resulting from perturbed initial conditions
(Paegle et al., 1997, references therein).

Attempts to explain these optimistic results
have focused either on enhanced local forcing
(e.g., topography or surface inhomogeneities) or
on the artificial errors introduced by the use of
“one-way” lateral boundary conditions (LBCs).
The latter effect is favored in the literature and is
the subject of the current paper.

Vukicevic and Errico (1990) found that error
growth in a mesoscale model occurs at fairly large
scales. They reported that the range of scales
that can interact with growing errors on the do-
main interior is constrained by the size of the LAM
domain. Therefore, uncertainties possessing the
largest spatial scale appear as LBC uncertainties
in a LAM (Paegle et al., 1997). The evidence
suggests that initial errors in the LAM would grow
more freely if the LBC constraint was weakened
(Vukicevic and Errico, 1990, pg 1467).

The goal of this work is to explore methods to
weaken the LBC constraint. This will be accom-
plished by allowing the LAM model to dynamically
select its LBC from among the range of equally
likely possibilities provided by an external (global)
model ensemble.
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2. Recent experience

In addition to the predictability issues outlined
above, the research being proposed in this paper
has implications for short-range ensemble fore-
casting. Furthermore, the methods to be inves-
tigated rely on a comparison of LAM and external
model solutions across the entire LAM domain.
Recent experience in these two areas are briefly
highlighted below.

a. SREF

Recent short-range ensemble forecasting (SREF)
experiments have shown that the ensembles of-
ten are under dispersive. That is, the verifying
analysis does not fall within the range of possi-
bilities forecast by the ensemble. Du and Trac-
ton (1999) found that a regional ensemble with a
larger domain produces greater spread than does
an ensemble with a smaller domain, especially for
those variables that were perturbed in the ICs.
Furthermore, they found that the contribution to
ensemble spread increases with time from LBC
perturbations and decreases with time from the
IC perturbations. These and other similar results
(Hamill and Colucci, 1997; Hou et al., 2001; Sten-
srud et al., 2000) demonstrate that, with time,
the spread of the LAM forecast ensemble be-
comes increasingly determined by the spread in
the global ensemble as high frequency compo-
nents are “swept” from the LAM domain (Vukice-
vic and Paegle, 1989).

b. LBC nudging and other schemes

Waldron et al. (1996) introduced a technique to
reduce LBC errors by nudging the spectrally fil-
tered long wavelength components of the LAM
forecast towards the external model solution. Un-
like more traditional Davies (Davies, 1983) nudg-
ing at the domain boundary, Waldron’s scheme
modifies the LAM solution across the entire do-
main. von Storch et al. (2000) later applied
the method to dynamical downscaling for ex-
tended regional climate simulations. The under-
lying premise for this approach is that the single



external (global) model forecast will predict the
larger scale motions more accurately than would
the LAM. However, it does nothing to account for
uncertainty in the external model forecast.

Waldron’s research, combined with the pertur-
bation model configuration used by NCEP’s Re-
gional Spectral Model (Juang, 2000), highlights
the importance of evaluating long-wavelength
structures across the extent of the LAM domain
when considering the LBC problem.

3. Idealized model experiments

It is clear that random and systematic compo-
nents of both IC and model error growth are un-
avoidable in common LAM configurations. How-
ever, the specific effects of model error due to the
LBC forcing alone can be isolated by generating
a model simulated truth and running global and
regional experiments with identical numerics.

An appropriate model choice is the barotropic
vorticity grid point model for a mid-latitude beta
channel. Emphasis lies with large scale mid-
tropospheric flow since these are the patterns
that are important for accurate placement of de-
veloping mesoscale and smaller features (Paegle
et al., 1997).

At the time of writing, this model had just been
coded, and results are not yet available. Thus, the
emphasis of the current paper is on a discussion
of planned experiments.

4. LAM ensemble configurations

Figure 1 is introduced as a schematic illustra-
tion of the parameter space defined by the range
of available IC and LBC solutions. It is argued
that traditional LAM configurations do not fully
utilize this parameter space, and that the avail-
able information is more completely used by in-
terfacing with a range of variable LBCs. Empha-
sis is placed on an ensemble configuration, but
possible configurations for a single LAM forecast
are revealed by considering individual ensemble
members.

a. Many ICs, one LBC

Suppose an ensemble is constructed by providing
a range of m equally likely ICs, yet only one LBC
(Fig. 1a). Evidence suggests that in the absence
of differences in model physical and numerical
schemes (including grid spacing), every member
of the ensemble might converge towards the sin-
gle external solution. This is the essence of the
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Figure 1: Schematic illustration of the IC/LBC pa-
rameter space available while configuring a LAM
forecast ensemble system. Each ensemble sim-
ulation begins with m equally plausible ICs (light
grey circles). LBCs are updated by regular data
dumps from one or more external forecasts (dark
grey circles) at time intervals ∆t. At every time
step of the LAM integration, LBCs are determined
by computing linear tendencies between any pair
of subsequent external updates (solid lines).

error growth constraint imposed by the one-way
LBC forcing (Vukicevic and Paegle, 1989) which
limits SREF dispersion (Du and Tracton, 1999).

b. One IC, many LBCs

Another possible LAM ensemble configuration is
to provide a range of n unique boundary condi-
tions to obtain solutions starting from a single ini-
tial state (Fig. 1b). Ensemble variance devel-
ops quickly since the LBC forcing is unique for
each forecast. Given sufficient time, the boundary
“sweeping” effect combined with nonlinear wave
interactions within the LAM domain replaces the
single solution with n different solutions. An en-
semble configured as in Fig. 1b will attain greater
dispersion than the previous case (Fig. 1a). How-
ever, the contribution to variance at smaller scales
still is not represented well, a characteristic which
largely motivates the use of LAM ensembles in
the first place.

c. Parallel runs

The ongoing discussion (and common experi-
ence) suggests that an optimal ensemble should
consist of both IC and LBC perturbations. The



contribution to ensemble spread at the initial time
reflects analysis uncertainty, and the growing
variance in the LBCs reflects the uncertainty in
larger scale external solutions. Furthermore, nat-
ural IC error growth and artificial LBC error growth
interact nonlinearly to enhance the variance with
time.

Existing SREF systems have been configured
by setting m = n and requiring that the initial
assignment of a single LBC to a given analysis
remains fixed for the duration of the forecast as
shown in Fig. 1c.

The ensemble dispersion for the configura-
tion shown in Fig. 1a can be calculated alge-
braicaly and compared with that for the configu-
ration shown in Fig. 1c. Let

ū(c) =
1
n

n∑
k=1

u(c)
k (1)

be the ensemble mean defined for any time at
each point on the nested domain, where the su-
perscript (c) indicates that a single control fore-
cast from the global model provides the LBC for
all n LAM ensemble members. The ensemble dis-
persion is defined as (Stephenson and Doblas-
Reyes, 2000)

D(c) =
1
n

n∑
k=1

∥∥∥u(c)
k − ū(c)

∥∥∥2

(2)

When each LAM forecast in the ensemble is
forced by a unique LBC from a global ensemble,
a difference vector zk is introduced for every en-
semble member 1 ≤ k ≤ n such that

zk = u(e)
k − u(c)

k (3)

The superscript (e) denotes the LAM ensemble
forced using an ensemble of LBCs. After taking
the ensemble average of z and making appropri-
ate substitutions, the dispersion for the LAM en-
semble becomes

D(e) =
1
n

n∑
k=1

∥∥∥u(e)
k − ū(e)

∥∥∥2

=
1
n

n∑
k=1

∥∥∥u(c)
k + zk − ū(c) − z̄

∥∥∥2

(4)

=
1
n

n∑
k=1

∥∥∥(u(c)
k − ū(c)) + (zk − z̄)

∥∥∥2

The square norm of a vector is the inner product
of that vector with itself. Thus,

D(e) = D(c) +
1
n

n∑
k=1

‖zk − z̄k‖2

+
2
n

n∑
k=1

〈
u(c)
k − ū(c), zk − z̄

〉
(5)

where the angle brackets denote the inner prod-
uct. If the inner product term is small, then D(c) is
enhanced largely by the dispersion of the exter-
nal model ensemble. If the inner product term is
large, then the interaction between perturbatation
growth on both domains enhances or dimishes
the dispersion depending on the sign of the prod-
uct. Since both models respond to nearly the
same dynamics, the interaction terms should be
positively correlated. If true, this result suggests
that SREF systems must be configured using
both IC perturbations and LBCs from the global
ensemble to maximize the ensemble variance.

However, experience indicates that LAM en-
sembles configured this way remain under disper-
sive and scale deficient due to the suppression of
error growth at the smallest scales (Du and Trac-
ton, 1999).

d. Interdependent runs

Consider again the full ensemble configuration as
in Fig. 1c, but relax the existing requirement that
correspondence between the elements of each
vector be fixed in time. Now, LBC tendencies
may be computed between any pair of external
updates as shown by dotted lines in Fig. 1d.

Suppose m equally likely ICs are provided for
the LAM ensemble. Then, given a set of n
choices for LBCs, a set of m × n forecasts are
generated by interpolating in time between every
IC and every LBC. Upon completing the first time
interval, each of the m × n ensemble members
could then be forced by tendencies obtained from
any one of the n LBCs given at the second time
interval. Thus, given T external model updates,
m × nT individual LAM ensemble members are
generated. Of course, such an approach is im-
possible to implement in practice, but let us pro-
ceed in thought to uncover some (un)desirable
properties.

Note that in the limit of continuous LBC updates
(lim ∆T → 0), the forecast trajectory evolves con-
tinuously without necessarily converging towards
any particular global solution. Indeed, the trajec-
tory through the m×n parameter space need not
be linear.

Many of the integration paths through this pa-
rameter space may involve LBCs that are com-
pletely inappropriate. For example, trajectories
through the parameter space in which the LBCs



are completely out of phase with the LAM solution
must be avoided.

Application of an interdependent modeling
strategy requires careful selection from among
the many available paths of integration. Such
paths might be indicated, for example, by the solid
lines in Fig. 1d. This is the focus of the current
research, and options are considered in the fol-
lowing section.

5. Planned model configurations

Having established the scope of the problem, it
is now appropriate to offer possible solutions that
minimize the impact of LBC constraints while us-
ing methods that are practical in application.

a. Benchmark

A good starting point is to generate LAM en-
sembles using each of the configurations shown
in Figs 1a-c. The results of such basic experi-
ments would establish a benchmark for compari-
son and validate the expected outcomes summa-
rized above. Of course, solutions using a two-
way nesting configuration also will be generated
for additional benchmark simulations.

b. Ensemble mean LBC

The mean forecast from global ensemble systems
possesses greater skill than individual forecasts
run at finer resolution (Toth and Kalnay, 1997).
The reason for this is that the unpredictable com-
ponents of the solution are averaged out, leaving
only the structure of the predictable part of the
flow. This result suggests that the skill of SREF
might be improved by simply applying the global
ensemble mean as the LBC.

However, such improvement is likely not possi-
ble since the effect would be the same as apply-
ing a single LBC to a set of different ICs as in Fig.
1a. Furthermore, smaller scale features would
be averaged out and the LAM solution would be-
come scale deficient as the larger scale features
’swept’ the domain. Although not useful in prac-
tice, this method could be computed as another
benchmark for comparison, especially for com-
parison against the control LBC.

c. Random selection

An unintelligent method of selection is to simply
pick the tendency path randomly at each junc-
ture in Fig. 1d. Such a method limits the num-
ber of ensemble members and produces another

benchmark configuration, but is likely not useful
in application.

d. Dynamic (active) selection

Now consider approaches that attempt to actively
select from the range of possible LBCs as shown
above in Fig. 1d. The idea is not to select the
“best” LBC, but rather the one that is most consis-
tent with growing errors across the nested domain
at any given time. Indeed, it is not possible in
practice to select the “best” LBC from among the
global ensemble members because truth is un-
known and each LBC is by design equally likely.

An objective measure is needed to determine
which choice of LBC from the global ensemble is
most consistent with the nested domain solution
as the forecast proceeds. The distance measure
needed to select consistent LBCs from the global
ensemble should apply to the entire nested do-
main rather than just along a limited zone near
the lateral boundary (Waldron et al., 1996).

Multivariate methods as suggested by
(Stephenson and Doblas-Reyes, 2000) provide
useful measures of distance. The covariance be-
tween the kth and lth members of an n member
ensemble is given by

Bkl =
1
p

p∑
i=1

[(Xki −Xi)(Xli −Xi)] (6)

where X is the n × p data matrix and p is the
number of points in the limited domain. The en-
semble covariance matrix indicates which ensem-
ble members are most similar. The diagonal ele-
ments measure the variance (in space) of each
ensemble member about the ensemble mean. In
application, the ensemble covariance matrix is ex-
pensive to calculate. For the purposes of choos-
ing the global ensemble member(s) that provides
the most consistent boundary conditions to the
LAM forecast at any given time, it is simpler to
compute only the distance between the current
LAM forecast and each ensemble member. More-
over, this would be the approach for generating
any individual LAM forecast. The appropriate
distance metric may be computed as the mean-
square difference between the kth and lth en-
semble members:

D2
kl = Bkk +Bll − 2Bkl =

1
p

p∑
i=1

(Xki −Xli)2 (7)

Thus, the domain mean-square error vector in-
cludes information about how each ensemble



member varies about the ensemble mean and
how each ensemble member fluctuates about the
mean in correspondence with the regional fore-
cast. If, in particular, l denotes the LAM forecast
and 1 ≤ k ≤ n represents the members of the
global ensemble, a p-element difference vector is
easily computed as

d2
kl =

1
p

(xk − xl)T (xk − xl) (8)

Other measures to be investigated include
multivariate regression or eigenvector and multi-
dimensional scaling. The latter consider issues of
rank deficiency as described by Stephenson and
Doblas-Reyes (2000).

Waldron et al. (1996) illustrates that spectral
analysis should be considered for selective com-
parisons of LAM and external model solutions
at longer wavelengths across the domain. Boer
(1993) decomposed the vorticity equation into
equations to diagnose systematic and random er-
ror components in an extended-range forecast.
These methods likely will prove useful in the cur-
rently proposed research.

6. Summary

The goal of this work is to examine the interaction
between IC error growth and artificial error growth
caused by inaccurate specification of the larger
scale environment through the LBCs. A properly
constructed LAM ensemble should not restrict the
error growth resulting from interactions between
these sources of uncertainty. Once such interac-
tions are quantified, methods will be explored that
do not inhibit the error growth across the model in-
terfaces by allowing solution trajectories to more
completely utilize the parameter space defined by
the set of ICs and LBCs. It is hoped that dynamic
selection of uncertain LBCs will improve the ac-
curacy of individual LAM forecasts which, in turn,
should help enhance the dispersion of SREF.
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