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1.     INTRODUCTION 

      Current practices of 3D variational analysis in 
many operational centers are constructed in 
spectral space, which has the advantage that the 
statistics of background error, both structure and 
amplitude, can be easily obtained and applied in 
the analysis procedure. It is simpler to apply a 
diagonal background error covariance in spectral 
space than to convolve  the corresponding smooth 
kernel with the innovations in the physical space. 
However, one has little control over the spatial 
variation of the error statistics when a simplified 
background error covariance in spectral space is 
used. With diagonal covariance in spectral space 
the structure function is limited to be homoge-
neous geographically (at least in the zonal 
direction) and isotropic in shape (Parrish and 
Derber 1992, Courtier et al 1998).
      Hayden and Purser (1995) following up on the 
work of Purser and McQuigg (1982) show how a 
very simple and computationally cheap family of 
recursive filters can be combined to yield empirical 
smoothers which are locally isotropic but retain the 
freedom of spatial inhomogeneity. Recent 
developments of spatially recursive filters (Purser  
et al 2001) enable the construction of a variational 
analysis in physical space which allows more 
degrees of freedom in defining the error statistics 
adaptively. Using recursive filters, we show an 
analysis system constructed on physical space 
with latitude dependent structure functions and 
error statistics.

2. GLOBAL ANALYSIS ON GRID SPACE

      In order to incorporate as much of the existing 
work in the global analysis system in NCEP, the 
version on physical space is formulated to be 
similar to the spectral statistical-interpolation 
analysis system (SSI, Parrish and Derber 1992). A 
preconditioned conjugate gradient algorithm (Gill 
et al. 1980; Navon and Legler 1987; Derber and 
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Rosati 1989) is used to minimize the functional. 
The analysis variables are stream function (ψ) 
velocity potential (χ) unbalanced part of 
temperature (T), surface pressure (P) and 
humidity (q), defined on the grid instead of in 
spectral coefficients. The amplitudes and scales of 
the background error are defined as function of 
latitude and height.
      For 3D Var in physical space, the multi-variate 
design between the analysis variables of mass 
and wind is a challenge. Since the variables are 
defined on physical space it is not easy to apply 
the linear balance operator (Parrish & Derber 
1992) which includes the inverse of the Laplacian. 
Yet the relation between the mass field and the 
stream function is linear, so that statistical 
regression between the two is possible. The 
balanced part of the temperature increment is 
defined as Tb= G ψ where matrix G projects 
stream function increments at one level to a 
vertical profile of balanced part of temperature 
increments. The balanced part of the surface 
pressure increments are defined as Pb= W ψ , 
where matrix W integrates the contribution of 
stream function from each level. The balanced 
part of the temperature (surface pressure) 
increments explains about 50% (80%) of the 
variance in the troposphere. A similar relation was 
also reported in Gustafsson et al, 1999. Since the 
variables are defined on a grid these statistics can 
be latitude dependent. We found that the balance 
design is crucial; without it the assimilation 
degrades quickly. The fit to the data for the 
surface pressure of the guess field is doubled in 
amplitude within two days (8 cycles) of 
assimilation when compared with the results of 
SSI. 

3. APPLYING RECURSIVE FILTERS TO A 
GLOBAL DOMAIN

      An efficient self-adjoint version of the 
numerical recursive filters can be applied to the 
task of convolving a spatial distribution of 
innovations with a smoothing kernel which is 
interpreted to be a covariance function of 
background error.



      To apply the recursive filter on the global 
domain the grid is divided into three pieces: two 
Cartesian polar patches and a zonal band in 
between. For the zonal band patch, both the 
inhomogeneity of the Gaussian grid and the 
shrinking of the zonal grid toward polar area is 
treated as scale variation. 
      For polar patches the transform routine 
between the Cartesian grid and the lat-lon grid, 
and its adjoint are needed. The stereographic 
projection is used to project the Gaussian grid on 
to a plane. The observational residual field is 
converted with the adjoint of the transform 
program from Gaussian grid to the Cartesian grid, 
recursive filters are applied, and the forward 
routine is used to transform the field back to the 
lat-lon grid. Two blending zones between the polar 
patches and the zonal band allow a smooth 
transition when the three parts are merged back to 
the global Gaussian grid.

4. ESTIMATION OF BACKGROUND ERROR 
COVARIANCE 

      The error variance is estimated in grid space 
with what has become known as the ‘‘NMC 
method’’ (Parrish and Derber 1992, Rabier et. al. 
1998). The error statistics are estimated with the 
differences of 24 and 48-hour forecasts for 49 
cases distributed over a period of one year. Only 
the results for stream function are shown. Fig 1  
shows that the amplitude of the error variance is 
largest in mid-latitudes and in the southern 
hemisphere.

Figure 1.  Background error variance (*100km)
of the stream function as function of  latitude and
height.

      The horizontal scale information from the 
background error in spectral space is retrieved by 
using the convolution effect in spectral space. In 
spectral space the dot product of the error 

statistics and the spectrum of an impulse at each 
latitude is taken and the result is transferred back 
to physical space to produce an isotropic structure 
at each latitude for each variable and at each 
height. A table of recursive filter results is used to 
fit the structures and produces the scales in 
recursive filter unit. Fig. 2 shows the horizontal 
scales of stream function are largest in the tropics 
and increase with height. 

Figure 2. Horizontal scale of the structure 
function in grid unit for the background error 
covariance of the stream function.

      It has been recognized that objective analysis 
using the Gaussian shape to model the covariance 
severely hampers the ability of the analysis to 
assimilate the smallest scales. The fat-tailed 
feature in the spectra of error covariance is also 
observed when the error covariance is defined in 
spectral space as in the current operational SSI.  It 
is straight forward to apply a background error 
covariance with fat-tailed spectrum in spectral 
space 3D Var since the error covariance is defined 
in the spectral space. To achieve a fat-tailed 
spectrum when using the recursive filters, a linear 
combination of multiple recursive filters is needed. 
      In our procedure, two horizontal scales are 
applied. The second horizontal scales are set to 
be a half of the first and the estimated scale from 
the NMC method fall between the scales applied. 
In the MPP computational setup horizontal 
smoothing is done when the domain is divided into 
horizontal slices and the vertical smoothing is 
done when the domain is in vertical columns. For 
computation efficiency, single recursive filter is 
used in the vertical direction.
      The vertical scales are estimated with the 
vertical correlation of each variable. The 
correlation is fitted locally with a table of results of 
recursive filters. The scale of the best fit out of the 
table is assigned as the scale of the variable at the 
vertical level for each latitudinal grid. Fig. 3  shows 



the vertical scales used for the stream function. 
Note that the vertical scales are also locally 
defined so that the negative correlation further 
away is not included. For unbalanced temperature 
the localized vertical correlation may introduce 
hydrostatic imbalance. The vertical scales are 
largest near the surface and stream function has 
the largest vertical scales among the variables. In 
general, the vertical scales are smaller near the 
tropics. These results are consistent with what is 
reported in Rabier et al (1998) and Ingleby (1999).

Figure 3. Vertical scales, in grid unit, of the
structure function for the background error 
covariance of the stream function

5 ANALYSIS AND ASSIMILATION RESULTS

      The analysis system is tested against the 
operational SSI in NCEP. Two sets of low 
resolution T62 data assimilation are cycled for 19 
days to produce 2 weeks verifiable 5-day 
forecasts. Figure 4 shows the anomaly 
correlations in the extra-tropics (latitudes 20-80 
north and south) for 500 hPa height. Each 
experiment verified against its own analysis. The 
14-case mean for northern hemisphere is 0.742, 
0.750 for the experiment and the control and 
0.714 and 0.718 for the southern hemisphere. The 
experimental analysis system produces a small 
negative (1%) impact in northern hemisphere and 
a slightly (.5%) negative impact in the southern 
hemisphere over the 2 week period. The impact in 
the tropics, however, is more consistent and 
positive. The day-3 RMS vector wind error at 200 
and 850 hPa is shown in fig. 5. The mean for the 
850 wind error over the period is 3.920 and 4.443 
for the experiment and the control respectively 
and 7.242 and 8.227 for the error at 200 hPa.  The 
improvement is 12% and 10% over the period for 
200 and 850 hPa respectively. 

6 CONCLUSION

      We propose an alternative way of defining 
background error covariance in 3D Var. By using 
recursive filters in physical space, the covariance 
can be changed with geographical location. This 
degree of freedom comes with a price: limited 
freedom of the error statistics in wave number 
space. This limitation is partially overcome by 
applying multiple recursive filters for the structure 
functions.
      In the experiments that we report in this study, 
the error structures are similar to those in the 
NCEP SSI since the scales of the background 
error structure are estimated with the NMC 
method and are homogeneous in the zonal 
direction. The small impact in the extra-tropics 
indicates that the 3D Var formulated in the 
physical space can be as effective as in spectral 
space. The consistent positive impact in the 
tropics indicates that the new-gained freedom in 
spacial variation (in current setup: latitude 
dependent) of the background error statistics is 
beneficial to forecasts compared with the freedom 
in wave number space (as in SSI) in which the 
statistics represent global characteristics.

Figure 4. The anomaly correlations in the
extra-tropics for northern (above) and souther
(below)  hemisphere 500 hPa height. Experiment
line with open square; Control: solid line

      Cutting up the global domain for recursive 
filters has its limitation. The problem is more 
severe in the stratospheric layers where the scales 
of the structure function are large compared to the 
sub-domain. A possible solution is to solve the 
largest few wave numbers in spectral space so 
that when the domain is divided, the largest 
overlapping can be defined by the lower bound of 
the solution in spectral space.



Figure 5.  RMS vector wind error at 850 (above) 
and 200 (below) hPa for 72 hours forecasts. 
Experiment: open square; control: solid line.

      It’s straight forward to apply this 3D variational 
analysis to a regional domain, and, we plan to 
work to adopt a fully inhomogeneous and 
anisotropic background error covariance in the 
system. 
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