P6.5 A BAYESIAN TECHNIQUE FOR ESTIMATING COVARIANCE PARAMETERS
IN LARGE SCALE STATISTICAL OBJECTIVE ANALYSIS

David F. Parrish

Environmental Modeling Center, NCEP
Camp Springs, MD

R. James Purser

General Sciences Corporation
Beltsville, MD

1. INTRODUCTION

As operational variational analysis schemes
evolve to accommodate more adaptive representa-
tions of the estimated background error covariance,
including inhomogeneities and anisotropies, there is
a corresponding greater need for objective statisti-
cal methods to establish the parameters of the co-
variances involved on a case-to-case basis. In their
traditional forms, methods for maximum-likelihood
and Bayesian estimation, while statistically ‘effi-
cient’, are prohibitively expensive to apply directly
when the measurement datasets are as large as
those typical of a modern meteorological assimila-
tion system. However, the Monte-Carlo method of
randomized trace estimation, proposed in another
context by Girard (1989, 1991), which sidesteps the
exorbitant cost of directly estimating the trace of a
large symmetric matrix, can be exploited to elimi-
nate the computational bottle-neck of the Bayesian
estimation problem. This makes it possible to ex-
tract objective real-time estimates of several covari-
ance parameters simultaneously from the observa-
tion data. An outline of the method is given here
(a more complete account is available in Purser and
Parrish 2000) together with a discussion of its ap-
plicability to practical data analysis schemes.

2. LIKELIHOOD AND BAYES’ THEOREM

The principles of statistical parameter estima-
tion that we intend to use may be explained in
general terms by way of the following idealized ex-
ample. Let a vector of statistical parameters, A,
be realized with a prior (probability) density, p(X).
Given a particular realization of A, let the condi-
tional density, for a vector of measurable events, v,
be p(y|A). Then, according to elementary probabil-
ity theory, the joint density for A and y is,

p(y, A) = p(ylN)p(A). 1)
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Equally, we may express the joint density as the
product of the conditional density of A given y and
the unconditional density p(y) of y:

p(y,A) = p(Aly)p(y)- (2)

Combining these, we obtain the result known as
Bayes’ theorem:

PYNP(N)

P(Aly) = )

3)

or, since p(y) = [p(yA)p(A)dA, where dX is the
volume measure in A-space,

__ pXpA)
p(Aly) = W (4)

When the objective is an inference based
on the conditional probability of A, we refer
to p(A) as being the ‘prior’ (density), p(Aly) as
being the ‘posterior’ (density). Note that the
role of p(y), which is not a function of A, is
to normalize the posterior. The function of A
which modulates the prior to obtain the posterior
evaluates numerically to the conditional, p(y|X),
but, in the context in which the measurable vector
y is known and parameter A is regarded as the
variable, this function is known as the ‘likelihood’.
To summarize Bayes’ rule: the posterior is, apart
from a normalizing constant, the product of the
prior and the likelihood.

In practice, it is almost always convenient to
refer to the logarithms of these quantities, thereby
converting the multiplicative relationship into an
additive one. The negative log-likelihood,

ly(A) = —logp(y|A) (5)

together with the negative log-prior and negative
log-posterior allow many Bayesian inference prob-
lems to be expressed in their algebraically simplest
forms.



For a more specific example of meteorological
relevance, let us adopt some of notation suggested
by Ide et al. (1997) and replace the generic
“parameters”, A, by the gridded values, =z, of
an objective analysis of atmospheric fields. Let
the 9°, be noisy measurements of Hz where, for
simplicity, we assume H to be a linear operator. If
we now assume unbiased normal statistics, with a
covariance matrix B for the n errors of the gridded
background field z°, that is:

p(x) = 1 T exp (—l(a:b —2)T'B (2" - z))

(2n)%|BI} 2
6)

and with a covariance matrix R for the m measure-
ment errors, the negative log-prior for this problem
is,

~logp(z) = 5 logl(2n)"|B}+ 5 (= ~) B (& =)

(7)
and, similarly, the negative log-likelihood function
is,

1 1
Ly(z) = 5 log[(2m)™ | R} + §(y°—HI)TE '(y°—Haz).
©)
Since the determinants, |B| and |R)|, are not depen-
dent upon the values =, the posterior probablility is
maximized when we minimize the quadratic form:

L(z) = Lo(x) + Ly(2) 9)

with
2L,(z) = (2" —2)"B (2" — =) (10)

and
2L,(z) = (y° — Hr)" R ' (y° — Hx). (11)

The expression above is, of course, the usual “cost
function” of a variational analysis, but we have
derived it here from explicitly Bayesian principles.
The minimization leads to a linear problem, though
typically one of a nontrivially large size, since the
number of data (m) tends to be several hundreds or
thousands and the number of gridded variables (n)
can be considerably larger still.

The solution vector, %, that minimizes this
L(z) is the optimal variational analysis state ex-
pressed by either of the two equivalent forms:

7 =z’ + BH' f, (12)

=2+ PPH'R d, (13)

with the vector, f, of analysis forcing components
given by the solution of the auxiliary linear problem

of size m:
Qf =d, (14)

where,
d=y’ —y’ =y — Ho, (15)

is the “innovation” vector, where
Q=HBH" + R= (dd"), (16)
is the autocovariance of the innovation vector, and

PP=B'+H'R'H '=B-BH"Q 'HB
(17)
is the covariance of error in the resulting analysis,
z°.

Now consider another example where the ob-
jective is to estimate a vector of k parameters, A,
which define certain qualities of the covariance B
itself. Let us suppose that the parameterization by
Ais constructed such that the prior estimateis A= 0
and the prior autocovariance of A is simply the iden-
tity, (M?) = I. Adopting the normal model for the
distribution of A, the Bayesian solution, obtained as
the maximization of the posterior probability den-
sity of A, leads to the problem of minimizing the
functional,

Lo = %AT/\+ LY + bV, (18)

where [; and l» are the two terms of the negative
log-likelihood in this case:

by = 51081, (19)
la(A) = %dTQ‘ld (20)

If the quadratic ‘prior’ term, AT, is omitted
from (16) the solution, if it exists, is the maximum-
likelihood solution which is discussed in Dee (1995)
and in Dee and da Silva (1999). The main
difficulty encountered in putting the estimation
procedure into practice is the evaluation of the log-
determinant term, log |@)|, or at least its derivatives.
The next section will focus on this problem and a
possible solution in terms of stochastic estimation
methods.

3. STOCHASTIC TRACE ESTIMATION FOR
LIKELIHOOD CALCULATIONS

If we apply an orthogonal transformation of
the vector basis to diagonalize the matrix @ we
can extend the logarithmic function in the obvious
way to matrix arguments and show that the log-
determinant has an equivalent expression in terms
of the matrix trace:

log |Q| = trace(log Q). (21)



Unfortunately, even with an efficient procedure to
evaluate the trace, the above substitution would not
be directly helpful in practice because the diagonal-
ization involved in constructing log @ would itself
be at least as expensive as the direct evaluation of
the determinant. In order to make practical use
of the likelihood function we must make some ap-
proximations based on reasonable assumptions. We
start by explicitly recognizing the fact that it is only
the relative differences in the log-likelihood function
that are ever meaningful. Then the fundamental
assumption we make is that the matrix quantities
@, whose associated likelihood functions we com-
pare, are never too dissimilar numerically within
the plausible range of the statistical parameters
that we explore. For a homomorphic set of covari-
ances, by which we mean a set taken from the same
continuously parameterized family, the optimal pa-
rameters can be taken as those locally maximizing
the log-posterior density, which involves evaluating
the derivatives of the log-likelihood with respect to
these parameters. In this context,the identity,

dlog|Q| = trace (Q~" dQ) (22)

looks more promising for practical manipulation
than (21). We shall assume that the construction
of the covariance B is such that there exists an
explicitly known operator C, (which, in matrix
terms, must be rectangular) into which @ formally
factorizes:

Q=cc". (23)

We use a zero subscript to signify a Adependent
operator or vector at the initial default value, A = 0.
For example,

fo=Q'd (24)

Now we can apply the method of Girard (1989,
1991) to the estimation of the trace in (22) by
realizing a Gaussian random white-noise vector e
and using it to form:

q= C()E, (25)

r=Q'e (26)

Then each g approximately shares the statistical
properties of the innovation vector d in the sense
that,

@ =0, (27)
(@a") = Qo, (28)

while each r obeys the statistics:
(r) =0, (29)

(rrf) = Qq. (30)

An infinitesimal change of [; at A = 0 satisfies,

(r'dQr).  (31)

N | =

dly = %trace (@' dQ) =

The principle of stochastic trace estimation allows
us to assume that the result obtained by replacing
the expectation operator in (31) by the sample av-
erage, denoted by an overbar, provides a consistent
and reasonably accurate estimate for dl;:

1 1l——+—
§<TT dQr) ~ EerQr. (32)

Thus, combining this result with the exact deriva-
tive of Iy leads to estimates for all the gradient
components of the complete negative log-likelihood
function at A= 0:

L0 |

o= gr | =5 (TQr—£1Quh). (3)
wh

ere Q - 6Q "

a E' ( )

The cost of applying either C or CT to vectors,
and hence the cost of applying @, is relatively
insignificant compared to the cost of performing a
linear inversion such as is implied by (26). Thus,
the gradient of the log-likelihood is estimated for
the equivalent cost of an inversion of (24), which
we need to do anyway in order to obtain the
optimal analysis, plus the cost of an auxiliary linear
inversion of (26) for each one of the p independent
random realizations of € (and hence of g and of
7). But typically, it suffices to use only a single
realization (i.e., p = 1) for large problems, as was
noted by Girard (1989).

For a direct application of the Newton Raph-
son method to the problem of finding a zero in
the estimated gradient of either the negative log-
posterior (Bayesian case) or just the negative log-
likelihood (maximum-likelihood case), one needs to
estimate the Hessian of the functional minimized.
Purser and Parrish (2000) discuss various ways of
extending the stochastic estimation procedure so
that, for a relatively small dimensionality of the pa-
rameter vector, A, all the Hessian components may
be stochastically estimated and appropriate modi-
fications made to the Newton Raphson formula to
make due allowance for the “fuzziness” introduced
into the problem as a consequence of adopting a
stochastic estimation procedure. Alternatively, a
steepest descent algorithm which employs crude fi-
nite differences in A-space to estimate each step size,
avoids the extra computational burden of complete
Hessian estimation.



4. DISCUSSION

We have provided an outline of a procedure to
identify the statistical parameters of a variational
assimilation scheme. The technical discussion has
focused on 3D-VAR but the technique is equally
applicable within the framework of 4D-VAR where,
as discussed by Fisher and Courtier (1995), there
is still a need to estimate the forecast error covari-
ances. The incorporation of a Bayesian prior into
the estimation has the effect of stabilizing the pro-
cedure (Verter and Dee 2000, and personal com-
munication) but risks imposing an undue imprint
of the prior guess on the set of parameters ob-
tained. Even when data are numerous, there is
one well-known potential danger of the application
of the pure maximum-likelihood method (without
a prior), and even the Bayesian method to some
extent. This is the lack of statistical ‘robustness’
of the estimates that can occur when there is an
insufficient resemblance between the parameterized
statistical model assumed for the innovation vector
and the actual statistical behavior of it. This is a
recurring problem in meteorological data analysis,
not just because of inadequacies in the modeling of
the spatial structure of the background errors them-
selves, but because of the complexity inherent in the
structure of biases and correlations in the observa-
tional data that are very difficult to account for in
a satisfactory way. The evidence from attempts to
apply the methods described here to actual data
strongly suggest the need to address the problems
of bias and correlation in the data before any sub-
stantial progress can be made towards the refine-
ment of background error covariances. Of course,
there is no reason in principle to restrict the esti-
mation methods to parameters that relate only to
the background statistics and, in fact, the inclusion
of statistical parameters that relate to the observa-
tional error distributions is just as valid.

For cases where the number of parameters
to be estimated is very large, the Bayesian prior
becomes a practical necessity. Conversely, having
a Bayesian prior in place means that a very large
number of parameters can be accommodated. One
context where this could prove very valuable is
in the estimation and tuning of parameters for
the diagnostic relationships by which features of a
background might control the amplitude and shape

of anisotropic and spatially adaptive covariances,
which are expected to come into operational use at
NCERP in the near future.
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