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1. INTRODUCTION

We present a formulation of an upper boundary
condition for non-hydrostatic models that, by
employing a second-order recursive filter in time
to record a ‘memory’ of the recent changes to the
presssure perturbation and vertical velocity, enables
an appropriate linear combination of these variables
to be constrained so as to minimize the spurious
reflection of gravity waves at a range of horizontal
and vertical wavelengths and to at least partially
absorb vertically-propagating acoustic waves. The
method can be thought of as generalizing the upper
boundary condition of Klemp and Durran (1983)
and Bougeault (1983).

2. PERTURBATION EQUATIONS FOR AN
ISOTHERMAL BASIC STATE

We shall assume a constant basic state tem-
perature, Ty, constant gravitational acceleration, g,
and we ignore rotation. From the usual specific
heats for air, we define v = C,/C, = 7/5 and
k= (y—1)/v = R/C, = 2/7. For this basic state,
the sound speed is ¢ = /vRTp, the atmospheric
scale height is H = RTy/g and the Brunt-Vaisala
frequency is N = \/k/vc/H.

In a two-dimensional vertical slice, we let v and
w be the horizontal and vertical wind components.
T is the temperature, P is the pressure, p = P/RT
is the density. For convenience, we define the Exner
function and potential temperature:

7 = Cp(P/Poo)", (1)
9 =C,T/n. 2)
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2.1 The basic state

We use a zero suffix to denote the basic state
variables and find that hydrostatic balance,
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implies the exponential vertcial profiles of the state
variables:
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2.2 Perturbation equations

About this basic state, the equations for
perturbations are:
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But if we adopt the rescaling:
U+ p(l)/2u, (6a)
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then the perturbation equations become more
symmetrical:
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where L = 14H/3 = 14RT,/(3g) is the “Lamb-
height” (e-folding distance for the Lamb wave
perturbation, in units for which the energy density
scales as the square of the perturbation). The
energy density becomes half the integrated sum of
squares of these new perturbation variables.

3. DISPERSION ANALYSIS AND WAVE
IMPEDANCE

Assume 0/0x = ik for a horizontal Fourier
harmonic and that all the dependent variables scale
like: _

b = e, ©)
for s > 0. Our original equations then become:
st = —ickT, (9a)
s = —cD7 + N6, (9b)
st = —ickd — ¢D*w, (9¢)
s6 = —N. (9d)
where,
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Applying substitutions,
a= % (11a)
s
6= %H) (11b)

we obtain:
N2
<? + S) w = —CD’]’?, (120,)
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(CT + s) 7 = —cD*w, (12b)
or the single equation for 7:
# = K*D*Dr, (13)
where 5 s
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Note that,
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so the only solution corresponding to forcing from
the lower boundary is

7 =ate #?, (16)

where
=g+ ) )
and p > 0. For later algebraic convenience, we note

that,

1
22 u? = N2k? + s°¢2 (k2 + m) +st. (18)

In this case of forcing from below,
7= 2w, (19)

where,

N sc 1
7 = 702]{;2 T 52 (IL+ z) 5 (20)

is the “impedance” of the disturbance at this s and
k.

Suppose the upper boundary condition is writ-
ten:

(t) = /0 T Z()w(t — t)at (21)

that is, a superposition of “effect” m depending on
preceding “causes” w through the impedance kernel
Z(t"), with Z(t") = 0 for ¢ < 0. Use Laplace
transforms to express:

m(t) = /Ooo westds, (22a)
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Figure 1. Reflection coefficients. Solid curves for Z = Zg;

dotted for Z = Z; with r = 25— !; dashed for Z = Z» with
b= r/\/§

w(t) = /000 we*tds, (22b)

so that,

#(s) = /0 T ZWetat(s).  (23)

Hence, inverting the relation,

Z(s) = /0 ” Z(t)e ! dt’. (24)

provides the “perfect” radiative boundary condition
for these linearized waves. Unfortunately, the
kernel, Z(t) is highly structured in the ¢ domain and
computationally practical approximations to Z(t)
that can be expressed with only a small storage
burden inevitably make significant errors in at least
some range of complex parameter s. Good radiative
boundary conditions seek to keep this error small in
the portion of s that matters most for meteorology,
while maintaining overall numerical stability.

In the absence of any special boundary condi-
tion, for example, when the vertical velocity is set
to zero at the model top all incident waves (acoustic
and gravity) are fully reflected. A vast improvement
is obtained by the choice of an impedance set equal
to the asymptotic limit:

.5 N
Zo(t) = lim Z(s) =2y = Pk (25)

given by the Klemp and Durran (1983) theory,
which is reasonably simple to apply in any model
whose horizontal domain is of a shape that facili-
tates double Fourier transformation.

We can insert s = io and use (20) to

A~

express the compler impedance Z as a function

of frequency o. The two branches of complex
u, which we may denote u™ and pu~ correspond
to upward and downward propagating waves of
the common frequency, o. In general, both
branches contribute to the solution satisfying a
given boundary impedance condition. Thus, if

W=+, (26a)
and
=it +a =Zvet+ 72w, (26D)

then the boundary impedance condition, Z = Z,,
is only satisfied when

o 5
W= M wt. (27)
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The magnitude of this ratio between the amplitudes
of downward and upward waves will be referred to
as the reflection coefficient (its square is a measure
of the fractional wave power reflected):

(28)

For the case, Zo(o) = Z,, and for a wave of
horizontal wavelength, A = 27/k = 2000m we
obtain the reflection profiles for the gravity and
acoustic modes shown in Fig. 1 by the solid
curves. While this method is reasonably good for
gravity waves, especially in the hydrostatic and
high vertical wavenumber limit, s — 0, where the
reflection coefficient tends to zero, it is clear that
this boundary condition does very little to absorb
the acoustic modes (for which it was never originally
designed). The reason is that the impedance of
purely vertically propagating acoustic waves in our
model is, in our particular choice of scaling units,

im Z(s) = Z, =1, (29)

which is many times larger than the magnitudes of
impedances typical of atmospheric gravity waves,
and the impedance of obliquely-propagating acous-
tic waves is even greater.

A partial solution to radiating both gravity and
acoustic waves is to employ a recursive time filter
to retain a ‘memory’ of recent vertical velocity at
the top:

w(t) = /Ooo re " w(t —t')dt, (30)

and then to use this for the upper boundary
condition:

7(t) = Zow(t) — (Za — Z)0(t).  (31)



The filter whose effect is the smoothing integral (30)
can be obtained as the recursive expression of the
differential equation:

di
d—f = —r(d — w). (32)
The impedance implied by this new boundary
condition is

(Zo — Zg)r

71 =24 —
1= “a r+s

(33)
The choice of the smoothing rate, r, can be
used to trade off the quality of the radiation
condition for gravity modes against the quality
of treatment for the acoustic modes. For an
intermediate value, » = 2.s7! (a time scale of
about half a second), the dotted curves of Fig.
1 show the reflection coefficient obtained with
horizontal wave length A = 2000m. For acoustic
waves propagating in the strictly vertical direction
the new boundary condition is now efficiently
absorbing but, compared with the Klemp and
Durran condition, the treatment of gravity waves is
now made rather worse. Evidently, the first-order
filtering approach does not constitute a completely
satisfactory solution.

We consider refining the definition of @ in (31)
by the substitution of a second-order recursive filter.
For example:

Zo — Zy)(2bs + 1r?)

5 (
Dy = Zy —
2 @ 82 + 2bs + r2

(34)

Such a filter is provided by recursively solving the
numerical representation of:

d*w dw  dw o, _

The impedance Z» retains the desirable asymptotic
limits,

lim Z, = 7, (36a)
lim Z, = Z,, (36b)
§—00

but we can select coefficients b and 72 to obtain a
better impedance match near s = 0. Since

d2 7,
ds?

— Z(Za — Zg)
= =

(37)

s=0

and, for the actual upward-propagating gravity

wave,
27t
ds?

_ [k +1/(4H?)] — 2N?

s=0

we need to choose,

2o _  2Za— Zy)N|ck]
" T P+ 1/(AH?)] - 2N (39)

The choice of coefficient b remains undetermined,
although it must be nonnegative if the filter is to
remain stable. One possible choice is b = 7/v/2,
the consequence of which is shown in the dashed
curves of Fig. 1 for the same horizontal wave length
selected for the other curves.

4. DISCUSSION

This preliminary study of radiation boundary
conditions for a compressible nonhydrostatic atmo-
sphere suggests that it is indeed possible to ex-
tend the method of Bougeault (1983) and Klemp
and Durran (1983) to include partial absorption
of acoustic modes while improving the handling of
those gravity modes significantly modified by non-
hydrostatic effects. The method involves the appli-
cation of a temporal recursive filter at the model
top. However, first-order recursive filtering is found
not to be sufficent — satisfactory results require
the application of a filter of at least second order.
Like the conditions of Bougeault, Klemp and Dur-
ran, the new method requires a horizontal spectral
decomposition at the model top. This raises the
question whether the resulting boundary condition
can then accommodate horizontal variations in the
Brunt-Vaisala frequency (assumed uniform in this
limited study). This question needs to be addressed
in a more complete model before we can give an au-
thoritative answer.
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