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1. INTRODUCTION

A non-hydrostatic semi-Lagrangian dynami-
cal core is under development as part of the
multi-institution Weather Research and Forecast-
ing (WRF) initiative (for example, Michalakes et
al. 2000, or the web-site, http://wrf-model.org).
This version is intended to complement an Eulerian
dynamical core, developed at NCAR (Klemp et al.
2001), that uses relatively simple spatial numerics
and a split-explicit vertically-implicit time integra-
tion scheme to maintain stability of the acoustic
modes.

2. SPATIAL ELEMENTS OF THE SEMI-
LAGRANGIAN MODEL

Our semi-Lagrangian option offers high-order
‘compact’ operators for all spatial differencing
and integration, together with high-order grid
interpolations for the semi-Lagrangian advection
itself. This emphasis on high formal accuracy in
the spatial discretization recognizes the importance
to operational mesoscale prediction of achieving
correct timing of mobile meteorological features.
The additional computational cost incurred by
high-order operators can be at least partially
mitigated by the longer time steps that a semi-
Lagrangian model allows (Robert 1981), provided
the stability of the ‘fast’ modes, (acoustic, but

* On leave from JMA, Tokyo, Japan. T On leave
from BMRC, Melbourne, Australia. ¥ Permanent
affiliation: ANL, Argonne IL

Corresponding author address: R. James Purser,
W/NP2 RM 207, WWBG, 5200 Auth Road, Camp
Springs, MD 20746-4304

possibly also the deepest of the gravity modes) can
be reliably maintained by using semi-implicit time
discretization. Since high-order spatial operators
allow the use of unstaggered variables without
much loss of accuracy (Purser and Leslie 1988),
the semi-Lagrangian model can be formulated
with just a single family of trajectories each
time step. The interpolations associated with
these displaced trajectories are handled using the
efficient ‘cascade’ interpolation method of Purser
and Leslie (1991) adapted to accommodate forward
trajectories (Purser and Leslie 1994) and mass
conservation (Leslie and Purser 1995).

Indirectly, the adoption of adaptive hybrid
sigma/theta vertical coordinates (Bleck and Ben-
jamin 1993, Konor and Arakawa 1997) can also mit-
igate the computational burden. The model levels
tend to concentrate within layers of especially sta-
ble air where important vertical structural detail
is often found. Thus, the hybrid coodinate model
resolves features which would require significantly
more levels using a conventional vertical grid (John-
son et al. 1993). The additional freedom obtained
in the model by allowing a more general prescrip-
tion for the vertical coordinate is something we plan
to incorporate in a later version of this model.

The efficient parallelization of the spatial opera-
tors of this model has been the subject of particular
study. For the case of the compact operators Fujita
and Purser (2001) supply a more detailed review.
Initially, the use of global (‘all-to-all’) data trans-
poses is being used, but more efficient methods may
be used in a later version.

3. TEMPORAL DISCRETIZATION

One consequence of selecting a forward-
trajectory semi-Lagrangian advection scheme is
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Figure 1. Stability regions in the complex Jét plane of
the filtered leapfrog and the third-order Adams-Bashforth
and Runge-Kutta schemes, with time steps adjusted for
equivalent rate of tendency function evaluations.

that it makes available a wider range of numer-
ical time integration schemes — essentially any
scheme for ordinary differential equations that can
be adapted for a semi-implicit treatment of the
‘fast’ components. In an Eulerian model, the
advective Courant-Friedrichs-Lewy condition im-
poses a strong inhibition against using anything
other than the filtered leap-frog method, because of
this method’s exceptionally lenient explicit stability
properties for advected structures. This is visible in
Fig. 1 which shows the stability regions in the com-
plex frequency plane Jét for the equation,

dyp

for a time-filtered leap-frog, together with alterna-
tives in the form of third-order Adams-Bashforth
and Runge-Kutta methods. What is relevant to lin-
ear advection is the fact that the leap-frog’s stability
region encloses a larger extent of the imaginary axis,
and can therefore get by with longer time steps in
Fulerian advection.

However, semi-Lagrangian methods are freed
from this particular restriction and the choice of
integration method can be better judged by other
criteria. For example, the leap-frog is second-order
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Figure 2. Stability regions (interiors of closed curves) in the
complex plane of Jdt for the explicit third-order Runge-
Kutta scheme (the dotted curve that is symmetric about
the real-axis) together with the stability curves for the semi-
implicit modification of Williamson’s scheme at assumed
frequencies, J* = i,3i,5¢ for the parameter choice, a; =
az = a3 = b = 0. J is the true complex frequency of
the mode. The curves for the implicit modified scheme all
pass precisely through the respective complex values of J*,
implying that the fast oscillatory modes are exactly neutrally
stable when J* = J, but are unstable for the smallest
underestimation, J* < J, which implies a lack of numerical
robustness.

accurate only in its pure form, but a practical im-
plementation involves measures to control the com-
putational mode, usually through a filter (Robert
1966, Asselin 1972) which reduces formal accuracy
to first-order and requires additional storage. Of
the more accurate third- and fourth-order methods
exhibiting stability for oscillatory modes, Adams-
Bashforth methods are unfortunately even more de-
manding on storage. However, certain Runge-Kutta
methods (Williamson 1980, Gill 1951) combine stor-
age economy with formal accuracy and are unbur-
dened by any compuational modes. Since other
characteristics of the semi-Lagrangian model are de-
scribed elsewhere, we devote the bulk of this pa-
per to an outline examination of one of these low-
storage Runge-Kutta schemes adapted to include
semi-implicit adjustments.

4. SEMI-IMPLICIT ADAPTATION OF
WILLIAMSON’S SCHEME

One of these methods is a third-order Runge-
Kutta scheme advocated by Williamson (1980). For
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Figure 3. Stability regions in the J plane for the semi-
implicit modified Williamson scheme for J* = 1, 34,5 when
a1 = a2 = a3 = 0. but with the second-order de-centering
parameter, b = 1. For the higher frequencies (larger loops),
a degree of robustness is obtained, since the curve of neutral
stability misses the point J = J* by a significant marging,
but this margin is not significant at smaller frequencies (e.g.,
for the curve for J* = ).

the case of a multi-component system more general
than (1),

& =) @

the method advances by a cycle of duration §t
in stages. In Williamson’s scheme, the cycle is
subdivided into shorter intervals in the ratio, {3 :
5 : 4}. Each cycle begins with ¢° = %(¢), and
EY = 0, and finishes with the complete update,
(t + dt) = 3. The three intermediate stages,
1 = 1,2,3, within each cycle advance the state 1
according to:

E7' =R F(W" )0t + Qi ET,  (3a)
G = =l 4 BTl 4 (3b)
where constants R and () are defined:
(Ro, R1,R2) =(1/3,15/16,8/15), (4a)
(Qo, @1,Q2) = (0,-25/16,-17/15),  (4b)

and the terms ¢ denote the semi-implicit adjust-
ment terms, which can be ignored in the explicit
algorithm. In order to evaluate the implicit terms
for the fast modes we assume that the Jabobian op-
erator J encoding the sensitivity of the fast-mode
forcing term F' = Fét to changes in the state 1:

dF = Jdy, (5)

can be approximated by J* =~ J where J* is the
linearization about a sufficiently simple basic state.
It can be shown that there is a family of consistent
semi-implicit adjustment formulae for the three
stages of this Runge-Kutta scheme:
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where the weights are defined in terms of three ‘first-
order de-centering parameters’ ai,as, as associated
with the three stages and a ‘second-order de-
centering parameter’, b associated with the middle

stage, according to:
15/1 b\ 1
W W2 Wl e T T
[ 0> 1> 2] [3:6(2+9)74:|5 (7&)

14a1 5 (1+4+a b\ 1+a
L R
(7),

2
WEZ—K, (70)

In the context of a complete model, the Jacobian
operator J* becomes a matrix of spatial partial
derivative operators structured so that, with further
manipulations, each adjustment equation involves
the solution of a Helmholtz equation. However, it
is illuminating to see the effect of the semi-implicit
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Figure 4. Modified Williamson scheme, as in Fig. 3, but with
a1 = a2 = a3 = .5 and b = 0.. All implicit modes are now
robustly stable.
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scheme we have described when it is applied to a
much simpler system, (1), where the Jacobian J
reduces to a complex number.

For the semi-implicit case, J* represents an
assumed complex frequency for the given mode.
As in Fig. 1, it becomes possible to examine for
the region of J for which stability occurs, but
now for each assumed J*. Formally, when all
the de-centering parameters vanish, each stage’s
adjustments become equivalent to the trapezoidal
rule and the stability regions for non-dimensional
J* = 4,3i,5i are given in Fig. 2. When J =
J*, these schemes are indeed stable, but only
the slightest underestimation of the frequencies
of the oscillatory modes |J*| < |J| induces a
numerical instability that would render this scheme
impractical. For schemes with vanishing first-order
parameters, a, but b > 0 the implicit modes remain
formally second-order accurate. Fig. 3 shows
how such a scheme, with b = 1, provides a small
margin of ‘robustness’ in the sense that a small
error in the approximating frequency J* does not
destabilize the scheme. However, this safety margin
becomes very thin for the slowest of the implicit
modes. Finally, by using a1 = a; = a3 = .5
(Fig. 4) substantial robust stability is achieved for
all oscillatory modes and, while they now become
formally only first-order accurate, this is deemed
an acceptable price to pay given that the implicit
modes are specifically those not of meteorolgical
significance.

The robustness we achieve by de-centering the
implicit calculations makes it significantly easier
and computationally less costly to stabilize the fast
modes of the model. Numerically, the task involves
solving a Helmholtz equation for the acoustic terms;
robustness allows the coefficients of this equation
to be simplified without risk of destabilizing the
integration.
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