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1. INTRODUCTION

The problem of inverting the very large system
of equations implied by the variational principle
defining a statistical objective analysis scheme is
normally tackled by an iterative numerical method,
such as the suitably preconditioned conjugate-
gradient or quasi-Newton techniques. At each
iteration, there is a requirement to convolve the
background error covariance with a gridded field in
order to recover another gridded field. Essentially,
the background covariance becomes a filtering
operator. This particular step, while it is only one
of the several algebraic steps that constitute a single
iteration cycle, is typically the one that dominates
the computational cost in 3D-variational analysis.
It is therefore very important to be able to execute
it efficiently.

The synthesis of covariance operators by care-
fully constructed combinations of simpler, one-
dimensional filters can be an efficient and versa-
tile approach. To avoid the principal grid direc-
tions imposing a spurious anisotropic imprint on
the morphology of the synthesized covariance func-
tion, each basic one-dimensional filter kernel must
closely approximate a Gaussian. Recursive filters
are able to mimic this profile efficiently and accu-
rately, as we shall demonstrate. The covariance pro-
file itself is not restricted to be of Gaussian type
since, by superposition of a few Gaussian compo-
nents of different scales, it is possible to produce
a range of ‘fat-tailed’ covariance profiles that are
arguably better suited to practical data assimila-
tion. Also, a negative-Laplacian operator applied
to a bell-shaped function yields negative side-lobes,
which is another way by which it might be desirable
to generalize a simple smoothing filter in order to
simulate realistic error covariances.
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Recent developments of the recursive filtering
technique allow us to consistently extend the syn-
thesis of covariances to incorporate geographically
adaptive modifications of covariance scale and am-
plitude, and general degrees of local stretching and
compression in both two and three dimensions at
arbitrary orientations. We describe some of these
techniques in this paper.

2. HOMOGENEOUS RECURSIVE FILTERS
2.1 Filters in one dimension

Let K/dz? denote the finite difference operator:

K(1)i/62* = —(ic1 — 205 + ¥i1) /02, (1)

approximating the differential operator, —d?/dz?,
on a line-grid of uniform spacing §z. The spectral
representation of the operator at wavenumber k
(wavelength 27 /k) is

K(k) = (2 sin (%))2 (2)

Inverting this relationship, we obtain a formula for
k? in terms of, K:
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Clearly, the same formula relates operator —d? /dx?
to operator K; in fact, the algebraic manipulations
we set forth here can be regarded as an application
of the ‘calculus of operators’ (Dahlquist and Bjérck
1974, p. 311). Using the standard expansion:
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Figure 1. Sequential application of quasi-Gaussian recursive
filters of order n in two dimensions. (a) n = 1; (b) n = 2; (c)
n = 4; (d) four applications of filters with n = 1 with scale
parameter adjusted to make the result comparable with the
other single-pass filters. Contours are shown at multiples of
odd integers.
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we may obtain a power expansion for k*§z?, and
thence, the expansions for the term, (k*§z?)%:

(K262%) = b j(K). (6)
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A tabulation of the coefficients b; ; is given in Purser
et al. (2001).
Consider the differential operator:
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whose spectral representation is
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where ¢ = a/dz. Since,
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the substitution of each power series (6) up to
degree n for the powers of k? into (8) gives us a

way of approximating this exponential function in
terms of K:
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Correspondingly, there is a finite difference opera-
tor, Dz‘n), composed of the nth-degree expansion of
K implied by this approximation which, following
a rearrangement of terms, we may write:
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Owing to the positivity of all the coefficients b; ;,
this operator is guaranteed a well-defined inverse.
The reciprocal of the function exp(a®k?/2) in
(9) is a Gaussian function in k and is the Fourier
transform of a convolution operator (on the line x)
whose kernel is also of Gaussian form. Provided
we can find a practical way to invert the operator
equation,

=1

Diys=p, (12)

for a given input distribution, p, the resulting out-
put, s, will be an approximation to the convolution
of p by the Gaussian function whose spectral trans-
form is the reciprocal of the right-hand-side of (11).
The approximation, ( ’(“n))_l, to this convolution is

what we refer to as a ‘quasi-Gaussian filter’. The

common centered second-moment of operator Dy,

and its approximation, ’DZ‘H), is exactly —a?, soa is a

convenient measure of the intrinsic distance scale of
the smoothing filter implied by the inversion of (12).
A useful fact is that the square of the intrinsic scale
of the composition of sequential smoothing filters is
the sum of squares of the scales of the individual
components. Also, as a consequence of the statis-
ticians’ ‘central limit theorem’ applied to convolu-
tions in general, the effective convolution-kernel of
such a composition of several identical filter-factors
resembles a Gaussian more closely than does the
representative factor. Thus, provided it becomes
feasible to invert (12), we possess the means to con-
volve a gridded input distribution with a smooth
quasi-Gaussian kernel, at least in one dimension.
As a matrix, Dz‘n) is banded and, for an infinite
domain, symmetric. ~Conventionally, the linear
inversion of a system such as (12) might be effected
by employing an LU factorization (Dahlquist and
Bjorck 1974) of Dy

ty = AB, (13)

with lower-triangular band matrix, A and upper-
triangular band matrix B, allowing the solution



to proceed as two steps of recursive substitution.
On an infinite grid, the same principle pertains,
but with the guaranteed simplification of: (i) a
translational symmetry ensuring that every row of
A is identical (allowing for the trivial translation)
and every row of B is identical; (i) ordinary
matrix symmetry by which we can ensure that B
is simply the transpose of A. In this case, the LU
decomposition of ’DZ‘n) is also of the symmetric, or

Cholesky type (Dahlquist and Bjorck 1974).
In the two stages of solution,

Ag=p, (14a)
Bs =g, (14b)

the explicit recursions of the back-substitutions are
the following basic recursive filters:
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which are conveniently referred to as the ‘advanc-
ing’ and ‘backing’ steps respectively since, in the
first, index ¢ must be treated in increasing order
while, in the second, it must be treated in decreas-
ing order.

2.2 Filters in two dimensions

Let = and y be horizontal Cartesian coordi-
nates, k and [ the associated wavenumber compo-
nents. Then in two dimensions, we can exploit the
factoring property of isotropic Gaussians:

a2p?\ a2k? a2l2
exp (— 2 ) = exp (-T) exp (-T) s

(16)
where p = (k* 4+ 1?)'/? is the total wavenumber. In
terms of basic one-dimensional Gaussian smoothing
filters, ’Dgzg}) and Dggg), operating in the z and y
directions, a two-dimensional isotropic filter, G,,
also of Gaussian form, results from the successive

application of the one-dimensional factors, Dgg)

and DEZC))). For example, an input field, x, is

smoothed to produce the output field, v, by the
convolution:

U(x) = //Ga(xl,xg)x(zg)dmg dys = G, *)((1,7)

where

Ga — D(CU) *'D(w)

(s0) * Dico)- (18)

The crucial significance of the Gaussian form
for the one dimensional filters is that this form is the
only shape which, upon combination by convolution
in the ¢ and y directions, produces an isotropic
product filter.

Fig. 1 depicts the results obtained by smooth-
ing a delta function placed at the center of a square
grid. Fig. 1a shows the result of a single application
of the first-order filter, D(;), in the z and y direc-
tions. This result is clearly neither smooth nor even
approximately isotropic. Figs. 1b and 1c show the
results obtained by using the filters of orders two
and four. We see that the appearance of isotropy is
not adequately attained until the order exceeds two,
but the fourth-order filter shown in Fig. 1c¢ seems to
provide an excellent approximation to the isotropic
Gaussian. For applications in data assimilation, it
is usually worth the cost of applying a filter of at
least fourth-order if the filter is to be applied only
once in each of the orthogonal grid directions. For
a roughly equivalent cost, one may also apply the
simple first-order filter four times in succession (but
with a scale only a half as large in each instance);
the result is shown in Fig. 1d, but is clearly inferior
to the use of the single fourth-order filter.

3. INHOMOGENEOUS FILTERS

We can generalize the conditions of homogene-
ity of the smoothing scales to incorporate the ef-
fects of a scale that can vary smoothly across the
grid, again, without invalidating the property of
self-adjointness. However, this additional general-
ization requires that, in all appearances of the op-
erator, (—(a?/2)d?/dz?), in the counterpart to the
polynomial (11) of this operator, a form of the sec-
ond derivative factor is substituted which is self-
adjoint even when a is a function of z. Of the
qualifying possibilities, the one that is most con-
venient in practice and which leads to a substance-
conserving filter, is the one most closely identified
with the operation of a diffusive process:

deEd
der 2 dz’

(19)

4. ANISOTROPIC FILTERS

In addition to spatial inhomogeneity, we would
like to be able to stretch the local shape of the
covariance function into the form of an ellipse (in
two dimensions) or ellipsoid (in three dimensions).
Except in the unnatural special cases where the
principal axes for the stretching exactly coincide
with the coordinate grid directions, we cannot
achieve the desired shapes without including non-
standard grid lines amongst the set of directions



Figure 2. Geometric depiction of an iterative step in the
Hexad algorithm, by which one skewed cuboctahedron in the
grid has one antipodal pair of its 12 vertices (defining one of
the active generalized grid lines) is replaced by another pair,
forming another skewed cuboctahedron. The before (a) and
after (b) pictures show that the topological configurations
remain equivalent although disjoint regions of the space of
aspect tensors are made accessible by positive smoothing
confined to the two respective hexads of generalized grid
lines. Generically, a given aspect tensor can be resolved into
positive line-smoothing operations associated with only one
hexad of this form.

along which recursive smoothing operators apply.
For example, in three dimensions, the description
of the requisite stretching generally involves six
independent components of a symmetric ‘aspect
tensor’ defining the spatial second moments. The
essentially additive property of second moments
under composition by spatially unbiased filters
(which is an exact result in the case of spatially
homogeneous smoothers) allows the six independent
aspect tensor components to be resolved into a
‘hexad’ of generalized grid lines and their associated
one-dimensional second moments of dispersion. A
special convention for choosing this hexad, which
we will briefly describe, ensures that this resolution
of the aspect tensor is essentially unique.

On a grid represented by any 3-vector of in-
tegers, the directions of a feasible hexad are col-
lectively the set generated by the integer displace-
ments, g7, for p = 1,...6, where the triple product,

[, 9", g™ =1 (20)
and ' . '
g(12) — 9(15) _ g(z3)’ (210,)

&6 = ¢ _ i) (21ew)
In the context of such a hexad it requires only linear
analysis to resolve the aspect tensor components
into the additive components associated with each

of the six generators of a given hexad. However,
for the hexad to have validity as a smoother, all six
of these projected components must also be non-
negative. It can be shown that, for every positive-
definite aspect tensor there is essentially always,
and only, one way to associate positive projected
components with the directions of a feasible hexad.

Geometrically, the 12 points comprising any
feasible hexad of generators, together with their an-
tipodes, have a convex-hull in the form of a linearly
transformed cuboctahedron, two examples of which
are shown in Fig. 2. In seeking the valid hexad for
a given aspect tensor, when an invalid trial hexad
(Fig 2a, say) projects a negative component of this
tensor onto one of its six diameters, we step closer
(e.g., Fig.2b) to the sought-after valid hexad by re-
placing only the generator associated with the of-
fending line with a generator of the only possible
alternative line which the defining hexad rules per-
mit. The stepwise replacement of one trial hexad
configuration by another therefore has a nice geo-
metrical interpretation which is illustrated in Fig.
2 by the mutation from panel (a) to (b). A short
chain of such iterations will usually suffice to find
a given aspect tensor’s unique hexad for which the
desired anisotropy is obtained by smoothing along
this hexad’s six directions with the dispersion scales
prescribed by the tensor’s positive projection into
these directions. There is an analogous ‘triad algo-
rithm’ for the two-dimensional case.
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