P6.5 PARALLEL IMPLEMENTATION OF COMPACT NUMERICAL SCHEMES

Tsukasa Fujita* and R. James Purser

Environmental Modeling Center, NCEP
Camp Springs, MD

1. INTRODUCTION

Compact numerical schemes for high-order
spatial differencing and integration are planned
to be incorporated into a non-hydrostatic semi-
Lagrangian dynamical core (for example, see Purser
et al. 2001) under development at NCEP as part of
the multi-institution Weather Research and Fore-
casting (WRF) project. Since the schemes require
recursive operations along entire lines of one dimen-
sion, they should be implemented with algorithms
carefully devised not to impair their performance
seriously. We tested three methods which feature
different parallelization strategies for the recursive
components, all of which are intended to be com-
putationally efficient. The three methods differ sig-
nificantly in their handling of communication. We
describe these implementations, their limitations,
and their relative computational performance. Only
a brief survey of these techniques is provided in
this preprint. A much more detailed treatment of
this investigation will be found in Fujita and Purser
(2001).

2. STRUCTURE OF COMPACT SCHEMES

A conventional high-order centered differencing
operator, which can be thought of as applying to a
vector ¢ formed by the source data along the grid
line to produce the target line of derivatives, vector
d, operates according to the explicit formula:

d = Be. (1)

The corresponding ‘compact’ scheme uses an alter-
native and more compact stencil of the derivative
coefficients that form the band matrix B, but also
involves a second band matrix matrix, A, of left-
hand side stencil coefficients to make the defining
operator for a line of data implicit:

Ad= Be. 2)

* UCAR Visiting Scientist. On leave from the JMA,
Tokyo, Japan

Corresponding author address: R. J. Purser,
W/NP2 RM 207, WWBG, 5200 Auth Road, Camp
Springs, MD 20746

The compact schemes at a given order of accu-
racy tend to involve a slightly greater computa-
tional cost (typically between 10 — 20 per cent),
than their conventional counterparts on a serial
shared-memory computer, but yield impressively
smaller coefficients of principal truncation error.
An example of a popular fourth-order compact
scheme is given in Navon and Riphagen (1979).
For a grid of uniform spacing, h, the stencil co-
efficients in a generic row of each matrix are
[1/6,2/3,1/6] for A, and (1/h)[-1/h, 0, 1/2] for
B. This scheme has a principal truncation error six
times smaller than that of the conventional fourth-
order differencing scheme, whose wider B-stencil
is (1/h)[1/12, —=2/3,0, 2/3, —1/12]. A variety of
other compact schemes are discussed in Lele (1992).

For a general centered scheme, let p be the
half band-width of the A-stencil (p = 1 for the
fourth-order compact scheme, and p = 0 for any
conventional scheme for which we may implicitly
regard the omitted A matrix as being the identity).
Likewise, let g be the half~width of the B-stencil
(¢ = 1 for the fourth-order compact scheme, ¢ =
n/2 for any conventional centered scheme of order

« WAVELENGTH
o 16h 8h 4h 2h o
10 t t t = 1
10"
PR ()
10°
10 ©02) "
0L an—
o
(o) 5 (0,3) -
& 10
i
-6 1,2)
AN} B
Y 10 (0,4) -
= 7 7
E 10 10
08
'L @2 10°
10°L ©8- 10°
10" @ 10"
]_0 11 10 11
10 63 107

Figure 1. Log-log plot of the relative truncation error
of unstaggered centered stencil differencing schemes as a
function of the wavenumber of the sine-wave to which they
are applied.



n). Then the most accurate compact scheme for a
given order of accuracy, n = 2(p+ q), is the scheme
for which either ¢ = p or else ¢ = p+ 1. (It is owing
to this fact that the ‘compact’ schemes derive their
name.)

Fig. 1 graphs the accuracy (in terms of relative
error) of various centered unstaggered difference
schemes denoted by their (p,q) pairs plotted as a
function of the wavelength of the sinusoidal function
to which each scheme is applied. These graphs
confirm that the accuracy of the compact schemes
exceeds that of the conventional schemes for each
of the equivalent orders of accuracy represented. It
also shows that the relative improvement obtained
with the compact scheme increases as the formal
order of accuracy increases.

The inherently recursive nature of the equations
we need to solve when the compact schemes are
used suggests initially factorizing the matrix A into
lower-triangular and upper-triangular factors. The
symmetry of matrix A may be exploited to make
these factors each other’s transpose and a constant
scaling of both sides of (2) lets us assume that
the principal diagonal of the resulting Cholesky
factor, L, consists of ones. The solution for a line
of compact derivatives may now be obtained by
carrying out the explicit operation associated with
the right-hand side matrix B:

x = Be, 3)

followed by a pair of back-substitution steps:
L'/’ =X (40’)

L"d=1. (4b)

Eq. (3) is an explicit operation which is
straight-forward to apply on either a serial or par-
allel machine. However, (4a) and (4b) are recur-
sive and would appear to require the calculations
to proceed in the forward and backward directions
respectively, since in component form, these steps
would be executed as:

P
i =xi— ot (5a)
j=1
p
di =i — Y ojdiy;, (50)
j=1

where the elements of L j steps from the principal
(unit)-diagonal are here denoted «;.

The back-substitution steps present no prob-
lems on a serial processor but we are immediately
faced with non-trivial practical difficulties as soon
as we attempt to apply these recursions efficiently
across the several subdomains of a grid that is

split up for parallel processing on a distributed-
memory computer. The sequential mode of process-
ing, which is acceptable for a serial machine where
the calculations are in any case performed one at a
time, is unacceptably inefficient in a parallel archi-
tecture where we want all processors to be simul-
taneously performing useful work, and not waiting
in line for their own stage of each recursion to be
reached before they begin computing.

We have investigated several methods for over-
coming this problem, using various configurations
of domain decomposition and several different com-
pact differencing, integration and midpoint interpo-
lation procedures (all of which have a potential role
to play in the mass-conserving semi-Lagrangian at-
mospheric model referred to in the introduction).
We have also been able to apply our methods on a
small number of different parallel computers. Only
a brief descriptive outline of three of these methods
can be given in this preprint; additional details will
be presented at the conference.

3. STRATEGIES FOR PARALLEL
IMPLEMENTATION

The majority of the timing experiments were
carried out for the case of eighth-order unstaggered
differencing - the compact scheme (2,2) and, for
comparison, the explicit scheme (4,0) in the index-
ing notation used in section 2. The relevant dimen-
sions of the grid for these experiments are the ‘ac-
tive’ dimension (parallel to the direction in which
the differencing operator is applied) and the prod-
uct of all transverse dimensions, including the ‘di-
mension’ over different field variables that are si-
multaneously treated by the same operator. By ap-
plying the operators to all such fields in a combined
calculation in a numerical model one reduces the
number of inter-processor messages initiated and
hence the overall time attributable to message la-
tency. Also relevant is the manner in which the grid
is carved up into subdomains, especially the number
of divisions in the longitudinal direction. At each in-
terior boundary formed by the division into subdo-
mains, it is necessary to transfer a sufficiently wide
strip (that is, at least p grid points, in the case of
the recursive processes, ¢ grid points for the explicit
steps of the compact scheme) of the updated inte-
rior data from the end of one subdomain to the cor-
responding neighboring domain. This transferred
copy of the data becomes available for calculations
in the neighboring processor as its so-called ‘halo’.
The cost of transferring the halo data is a significant
proportion of the computations in a parallel com-
puter. The strategies we apply seek to ensure that
all processors remain busy throughout the compu-
tations while trying to minimize the cost associated



with the transfer of halo messages between proces-
sors.

3.1 Method 1

The first strategy, which we refer to as ‘Method
1’ is to apply the recursive computations in all sub-
domains simultaneously, regardless of the fact that
erroneously zero values are being used to initiate
these recursions in the subdomains’ respective halo
strips. Upon completing these recursions for each
subdomain, a set of numerical discrepancies can be
collected from each of these haloes. Then, by re-
distributing the resulting array of errors equitably
among processors, in such a way that all the discrep-
ancies belonging to any given complete grid line par-
allel to the active direction are assigned to the same
processor, it is possible to reconcile the mismatches
and infer for each halo region precisely what the
correct results of the recursive sweep should have
been. Following this substitution, a second sweep
of the same recursion simultaneously in every sub-
domain, but now beginning with the correct halo
values, will yield a self-consistent end result.

One obvious defect of this strategy is that it
requires the recursive calculations throughout the
domain to be repeated. Also, the ‘reconciliation’
step, by which the corrected halo values are
obtianed, involves a significant amount of message
passing in order to be able distribute the work of
calculating the results for this intermediate step
evenly among the processors available.

3.2 Method 2

The second strategy, ‘Method 2’ seeks to min-
imize the redundancy associated with the repeti-
tion of each recursion in Method 1 by exploiting
the fact that the characteristic reponse functions
of the recursive operations associated with actual
compact numerical methods involve rapidly decay-
ing exponentials. This implies that, given the finite
and known machine precision, the effective range of
influence of these operations is never more than a
few tens of grid spaces. In fact, this implied de-
cay scale is typically less than the width of a single
subdomain, so the elaborate ‘reconciliation’ step of
Method 1 can be substantially simplified.

Initially we subdivide each of the subdomains
in the transverse direction into ‘stripes’ that match
up for the length of the entire domain. For any
given stripe the recursive operations are begun
at a designated processor that need not be the
one at the starting edge of the whole domain.
Having chosen a starting processor for recursive
calculations of a particular stripe, each processor
in cyclic sequence along the length of this stripe
waits its turn to process the recursion in the

proper relative order until a full cycle, plus the
requisite decay-width overlap necessary to overwrite
the earliest of these recursive calculations, has
been completed. Although the recursions begin
erroneously (unless the starting point for this stripe
happens to be at the appropriate domain boundary)
for want of the proper values with which to
prime the recursions, the error incurred diminishes
to numerical insignificance within the scheme’s
characteristic decay-scale. But this extent of the
earliest results is precisely what is overwritten when
the cycle of one-sided recursive calculations for this
stripe becomes complete. The halo communication
is simpler than in Method 1; each halo message is
passed only to the adjacent subdomain.

Since many stripes thread any given subdo-
main, it is always possible to stagger the starting lo-
cations of the recursions across the bundle of stripes
in a staggered sequence that ensures that, at any
given time, every processor has at least one stripe
threading it on which it is actively calculating the
recursions in (5a) or (5b). Moreover, for domains
of large size in the active direction of the recursion,
the remaining inefficiency associated with the nec-
essary overlap of this method becomes very small
in proportionate terms.

3.3 Method 3

The last of the strategies we have studied is
simply the ‘brute-force’ approach of performing
a global (‘all-to-all’) transposition of the gridded
data initially to arrange that all of the points of
each given domain-straddling line parallel to the
active direction are placed in the same processor.
The recursive computations then involve no further

Computational Costs for Differencing
10 T T

Method 1 —+—

Method 2 --x---

Method 3 ---%---
Conventional --&

0.001 L L
100 1000 10000 100000

Figure 2. Log-log plot of the timing experiment results for
Methods 1, 2, 3, and conventional centered scheme, all of
eighth-order, using 4 X 4 processors. The total numbers
of grid points in directions transverse to the direction of
application of the differencing scheme are plotted along the
x-axis. Times required to repeat each operation five times
over the entire grid are indicated by the y-axis.



message-passing until, at the end of the computa-
tion phase for this compact scheme, the data can be
re-arranged (by another global transposition) back
to their original processors.

Of the three methods, this ‘Method 3’ is clearly
the most straight-forward to implement. However,
it involves the movement of practically all of the
gridded data.

4. RESULTS AND CONCLUSIONS

Various grid and subdomain configurations
have been tested. The three methods summarized
in section 3 were compared together with an imple-
mentation of the conventional differencing method
of corresponding order. The results shown in Fig.
2 are rather typical as far as the relative rankings
go. The conventional scheme is always computa-
tionally cheaper than any of the compact schemes.
Among the compact schemes, Method 2 is consis-
tently superior to Method 1. Usually, Method 3
is the most costly strategy. The results depicted
are for NCEP’s IBM SP computer, but similar rel-
ative rankings have been obtained on other parallel
platforms. For large domains combined with large
numbers of domain subdivisions in the active direc-
tion, the gap between the conventional scheme and
compact Method 2 closes somewhat, making this
compact implementation a more attractive option
(given its substantially smaller formal truncation
error coefficients).

Despite the wusually poor performance of
Method 3 when only a single compact operation is
sandwiched between global transposes of data, this
choice becomes much more appealing for some ap-
plications in numerical weather prediction where it
is possible to concatenate a short sequence of the re-

quired compact operations that all share the same
active direction. In this case, the communications
are restricted to one traspose at the start and one
at the end of such a chain of operations. The com-
munications overheads then become much less bur-
densome.

5. ACKNOWLEDGMENTS

The authors are grateful to Mr. Jim Tuccillo of
IBM and Mr. John Michalakes of ANL for valuable
discussions and assistance. This work was partially
supported by the UCAR Visiting Scientist Program
and the NSF/NOAA Joint Grants Program of the
US Weather Research Program. This research is
also in response to requirements and funding by
the Federal Aviation Administration (FAA). The
views expressed are those of the authors and do not
necessarily represent the official policy or position
of the FAA.

REFERENCES

Fujita, T., and R. J. Purser, 2001: Parallel
implementation of compact numerical schemes.
NOAA/NCEP Office Note, 33 pp. (To appear.)

Lele, S. K., 1992: Compact finite difference schemes
with spectral-like resolution. J. Comput. Phys.,
103, 16-42.

Navon, I. M., and H. A. Riphagen, 1979: An im-
plicit compact fourth-order algorithm for solv-
ing the shallow-water equations in conservation-
law form. Mon. Wea. Rev., 107, 1107-1127.

Purser, R. J., T. Fyjita, S. K. Kar, and J. G. Micha-
lakes, 2001: A semi-lagrangian dynamical core
for the non-hydrostatic wrf model. (Preprint)
AMS Ninth Conference on Mesoscale Processes,
Jul. 30th—Aug. 2nd 2001, Fort Lauderdale, FL.



