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IN A MULTIDIMENSIONAL PARAMETER SPACE
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1. INTRODUCTION

The past decade has seen increasing interest in
ensemble methods for operational numerical weather
prediction. Ensemble forecasting is motivated by the
recognition that numerical predictions always contain
uncertainties, so that it is desirable to use a range of
plausible realizations when performing forecasts. Early
implementations of ensemble methods focused mainly
on uncertainties in the initial conditions. Recent studies
have extended the ensemble approach to account for
uncertainties in the model itself. These studies have
shown the value in using ensembles constructed from
realizations using either different models (e.g., Atger
1999) or different parameterization schemes in a given
model (e.g., Stensrud et al. 1999, 2000).

Here we describe an approach to construct
ensemble simulations that partially account for uncert-
ainties in model formulation, using a workstation version
of the NCEP Eta forecast model. This method con-
structs ensembles by performing simulations using
different values of closure constants within parameter-
ization schemes. This is a work in progress so that the
present paper is intended as a description of the general
approach along with plans for future development.

2. CONSTRUCTION OF ENSEMBLES

The version of the Eta model used in our study
contains two options for the parameterization of deep
convection. One is the Betts-Miller-Janjic (hereafter
BMJ) scheme, which is a version of the scheme devel-
oped by Betts and Miller (1986) with revisions by Janjic
(1994). This is the parameterization currently used in
the operational Eta model at NCEP. The other option is
the Kain and Fritsch (1990; hereafter KF) deep convec-
tion scheme. Comparisons of the BMJ and KF schemes
have been given in previous studies (e.g., Stensrud et
al. 2000).

At the present stage of development we have
constructed ensembles by altering two parameters in
the KF scheme. One parameter is the time scale for

release of available buoyant energy, denoted T. In the
KF scheme this parameter controls the rate of adjus-
tment of the resolvable-scale profile by deep convection.
For a prognostic variable ¢, the rate of adjustment is
given by
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where @ and @,q; are grid-point values before and after
adjustment by deep convection, respectively. The
second parameter varied in our study represents an en-
hancement to parcel buoyancy that depends on
resolvable-scale vertical velocity, w. This enhancement
T’ is specified as
T =aw’® @)

Convection is allowed to initiate (i.e., potential buoyant
energy becomes available) if T, + T’ + T'rn at the lifting
condensation level exceeds the environmental tempera-
ture, where T is the temperature of the rising parcel and
T'’ru is @ buoyancy adjustment that depends on relative
humidity. In the standard version of the KF scheme the
parameters discussed above take on the values T =
1800 s and a = 4.64 K cm™s"?

We constructed ensembles by using three values

for T (1800, 3600, and 5400 s) and three values for a (0,
5, and 10 K cm'1/351/3). The resulting 3x3 matrix of sim-
ulations has two possible uses. First, it allows us not
only to test the sensitivity of model results to variations
of each parameter, but to examine how the parameters
interact with one another. This differs from the usual
type of sensitivity study in which only one parameter is
varied at a time. Second, the simulations can be used
as a 9-member ensemble which may have added value
compared to the control run.

3. RESULTS

Here we show an example precipitation prediction
using the multidimensional ensemble approach. Our
test case is 11 April 2001 in which lines of convection
moved through the northern Great Plains and produced
tornadic thunderstorms over lowa. The Eta model was
configured with a horizontal grid containing 199x121
points at a spacing of 32 km and 38 levels.

Predicted ensemble-mean precipitation is given in
Figure 1. We find that member-to-member variations do
not follow any strict pattern, implying that we have a true
ensemble rather than a simple linear scaling of the ref-
erence forecast. Also, results from all members are
physically plausible in that they show reasonable corres-
pondence with observed precipitation (e.g., precipitation
is not totally suppressed, or amplified to unrealistic
values). In fact the ensemble spread, shown here as
the standard deviation of predicted precipitation (Figure
2), is rather small. Member-to-member variations in
precipitation are within about 10-20% of the ensemble
mean. The small spread is reflected in the coefficient of
variation (ratio of the ensemble standard deviation to the
ensemble mean; Figure 3) which generally ranges 0.04-
0.14.



4. SUMMARY AND DISCUSSION

We have described an approach for creating
ensembles of short term forecasts using variations in a
multidimensional parameter space, and have implemen-
ted the approach in a workstation version of the NCEP
Eta model. Although results are encouraging in that we
do not obtain a simple linear scaling, ensemble spread
in the test case is rather small. The small spread may
result from the parameters chosen to create the ensem-
ble, or it may be influenced by the test case we used.

Examination of the KF scheme suggests possible
reasons for the small spread in our ensemble. First, the
KF scheme limits T to the advective time scale; i.e., T <
AX/U (where U is mean wind speed). As an example,
for our grid spacing of 32 km, T is limited to 3200 s if U =
10 m s™, so that our values of T = 3600 s or 5400 s
would not be reached. Second, once the buoyancy en-
hancement T’ attains such a large value that convective
inhibition is effectively irrelevant, further increases
produce no change. Thus beyond some limit, larger
values of ain equation (2) do not increase spread.

As a more thorough test we plan to run ensem-
bles in a “quasi-operational” mode in which the
ensemble is executed on a day-to-day basis though not
necessarily in time for forecast use. We also will test
implementations in which other closure parameters are
varied in the KF scheme, as well as ensembles based
on variations in the BMJ scheme or the explicit part of
the moist physics parameterization. Updated results will
be made available on our World Wide Web site,
http://www.mesoscale.iastate.edu .
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Figure 1: Ensemble mean 12-hour precipitation valid
18 UTC 11 April 2001. Shading interval is 10 mm.

Figure 2: Standard deviation of ensemble precipitation
corresponding to Figure 1. Shading interval is 0.5 mm.

Figure 3: Coefficient of variation (ratio of standard devia-
tion to mean) for ensemble precipitation corresponding to
Figure 1. Shading ranges from 0.14 to 0.04 at intervals of
0.02. Note darker colors indicate lower values. Areas
with zero mean (for which the coefficient of variation is
undefined) are masked out.




