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1. INTRODUCTION

The Ensemble Transform Kalman Filter (ET KF) adap-
tive sampling technique has been used at the National
Centers for Environmental Prediction (NCEP) during the
quasi-operational 1999, 2000 and 2001 Winter Storm Re-
connaissance (WSR) Programs (Szunyogh et al. 2000,
Toth et al. 2001). The ET KF aims to identify deployments
of aircraft-borne dropsondes that maximize the chance
of significantly improving 1-3 day winter storm forecasts
over the continental United States. It attempts to predict
the reduction in forecast error variance associated with
each possible deployment of adaptive (or targeted) ob-
servations, via a quantity termed the signal variance.

A “signal” is defined by the difference between two
forecasts, initialized with and without the targeted obser-
vations. For linear error evolution, the signal variance
(over all independent realizations) is equal to the reduc-
tion in forecast error variance, if observation and back-
ground error covariances are accurate and identical to
those produced by the data assimilation scheme. How-
ever, since model trajectories and background error co-
variances assumed by the ET KF are imperfect and dif-
ferent to those of NCEP, the respective signals are likely
to differ. We seek answers to the following questions:

(1) Does an increasing relationship exist between the
ET KF signal variance and the variance of operational
NCEP signal realizations?

(2) Does a similar relationship exist between the
signal variance of NCEP forecasts and the reduction in
NCEP forecast error variance?

If these two relationships hold, they can be combined
to give ET KF estimates of the error reducing effect of
targeted observations within verification regions of inter-
est. Potential benefits include (a) making quick decisions
on when and where to deploy targeted observations, (b)
warning operational data quality control schemes against
the rejection of observational data if the signal variance
is large, and (c) estimating economic benefit due to any
future deployment of observations.

The ET KF theory is explained in Bishop et al.
(2001), and the ET KF products used during NCEP’s
WSR programs are described in Majumdar et al. (2001a).
Here, we focus on the ability of the ET KF to pro-
vide quantitative estimates of the reduction of operational
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Fic. 1. Based on an ensemble initialized at ¢;, a de-
cision is made at t4 to deploy adaptive observational re-
sources at the future analysis time t,, to improve a fore-
cast (initiated at t,) valid within a verification region at ¢ ;.

analysis and forecast error variance, using data from the
WSRO0 program. Further details of this study, such as
how signals produced by the ET KF and NCEP’s 3D-
Var data assimilation schemes (Parrish and Derber 1992)
may differ, are given in Majumdar et al. (2001b). In Sec-
tion 2.1, we answer question (1) above by grouping to-
gether NCEP signal realizations to calculate their sample
variance at the analysis time ¢, (Fig.1). In Section 2.2,
we do the same at the verification time ¢; and then test
question (2). Concluding remarks are given in Section 3.

2. TESTING ET KF vs. NCEP SIGNAL VARIANCE

In this section, we test whether the ET KF can be used
to predict operational signal variance at times ¢, and ty,
by seeking a statistical relationship between the respec-
tive signal variances. Throughout the study, an ensem-
ble of 25 ECMWF members (initialized +36 hours prior
to time ¢,) (Molteni et al. 1996, Buizza et al. 1998), 2
NCEP MRF members (+36h), and 5 NCEP MRF mem-
bers (+24h) (Toth and Kalnay 1997) is used. The 32 en-
semble members contain horizontal wind components at
the 850mb, 500mb and 200mb levels.

2.1 Future analysis (targeting) time ¢,

First, we test the relationship between ET KF and NCEP
wind signal variance using all 242 dropsonde locations
from the 12 flight days between 23 Jan — 16 Feb 2000.
An example of the ET KF predicted signal variance and
an NCEP signal realization for one flight day is shown in
Fig.2. The squared NCEP signal and predicted ET KF
signal variance at all 242 locations are plotted in Fig.3a.
A small ET KF signal variance at a location ought to indi-
cate that the NCEP signal magnitude at the same site is
small. The converse is not necessarily true. A large sig-
nal variance merely suggests that the distribution of sig-
nals is broader than if it were small. We calculate sample



variances of the NCEP signal in Fig.3a by placing signal
realizations into 3 groups which contain the lowest 81,
middle 81 and highest 80 values of ET KF signal vari-
ance respectively. The NCEP sample signal variance is
the average of all squared NCEP signals in that group
(represented by the horizontal bars in Fig.3a). These val-
ues increase monotonically with respect to the average
value of the ET KF signal variance in each group.

To test statistically whether the ET KF and NCEP
signal variances are related, we assume that all signals
are independent and normally distributed, so the sample
signal variance comes from a chi-square distribution with
80 degrees of freedom (79 in the third group). The 99%
confidence interval for the NCEP signal variance of each
sample is then plotted in Fig.3b versus the average ET
KF signal variance in each group. The best fit lines for
the linear, increasing relationship between the ET KF and
NCEP signal variances, and for the upper and lower con-
fidence limits, are also shown. The gradient of the best
fit line is roughly 8. A linear statistical rescaling using this
factor can enable the ET KF to give approximate predic-
tions of the NCEP signal variance at the analysis time ¢,.

A second test of the robustness of the relationship
between the ET KF and NCEP signal variances is per-
formed by eliminating data from each of the 12 flight
days, and producing best fit lines similar to those shown
in Fig.3b. In this manner, the variability of the ET KF
— NCEP signal variance relationship with respect to the
withdrawal of independent sub-samples from each flight
day is tested. The 12 best fit lines in Fig.3c all lie within
the regression lines for the 99% confidence interval of
NCEP signal variance, except at low values. The similar-
ity of these 12 lines implies that the relationship between
the ET KF and NCEP signal variances is generally stable
if data at observation locations are added or removed.

Although the two tests described above confirmed
some qualitative similarities, the ET KF signal variance
overestimated the NCEP signal magnitude by an order of
magnitude. Possible reasons for this overestimation are
given in Majumdar et al. (2001b). In particular, the ET KF
currently overestimates components of the analysis error
covariance matrix; work is under way to rectify this.

2.2 Forecast verification time ¢y

We now test the ability of the ET KF to predict NCEP sig-
nal variance within a pre-selected verification region at
the future verification time ¢¢. This ability may be com-
promised by several factors, discussed in Majumdar et al.
(2001b). The ET KF forecast signal variance and squared
NCEP forecast signal at every grid point (2.5 degree res-
olution) within each verification region is plotted for 30
potentially important weather events during the WSRO0
period (Fig.4a). In a similar manner to Fig.3b, the points
are placed into 5 groups, depending on their ET KF sig-
nal variance value (Fig.4b). To a good approximation, the
NCEP sample signal variance (average of squared sig-
nals) increases linearly with average ET KF signal vari-
ance in each group. The 99% confidence limits show that
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FiG. 2: (a) Squared NCEP signal of horizontal wind
components at analysis time OOUTC, 11 February 2000.
Dots represent locations at which dropsondes were re-
leased. (b) ET KF predicted wind component signal vari-
ance valid at 0OUTC, 11 February 2000, using a 24/36h
old ensemble of ECMWF and NCEP forecasts.
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FiG. 3: (a) Squared NCEP signal and ET KF signal
variance for each observation site at time t,. Bars rep-
resent the NCEP sample signal variance. (b) Best fit line
and regression lines through the 99% chi-square confi-
dence limits of the NCEP signal sample variance. (c)
Grey: Best fit lines with data from each of the 12 flight
days suppressed. Black: Regression lines of Fig.3b.
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FiG. 4: (a) Squared NCEP forecast signal and ET KF
forecast signal variance, for all 1944 grid points within 30
WSRO0 verification regions. The points are divided into
4 categories of 389 and one of 388, arranged in order of
increasing ET KF signal variance. The height of each of
the 5 bars gives the NCEP sample signal variance of that
category. (b) Error bars represent the 99% confidence
interval of the NCEP signal variance for each of the 5 cat-
egories, plotted versus the mean ET KF signal variance
for that category. The three lines represent the best fit re-
gression line between ET KF and NCEP signal variances,
and corresponding lines for the 99% confidence limits. (c)
Grey lines: Best fit lines calculated in a similar manner to
Fig.4b, but with data from each of the 30 verification re-
gions denied. Black lines: Regression lines of Fig.4b (in
which no data were denied).
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FiG. 5: The height of each block corresponds to the re-
duction in NCEP forecast error variance in each sample.
A cubic spline is drawn through the respective sample
variances. The “ideal” relationship, where the reduction
in forecast error variance is identical to the signal vari-
ance, is also shown for comparison.

the probability of a non-monotonic relationship between
the ET KF and NCEP signal variances is minimal. The
ET KF signal variance needs to be reduced by a factor of
roughly 14 to give a scale comparable to the NCEP fore-
cast signal variance. Since this scaling factor is higher
than the factor of 8 at the analysis time t,, the growth
rate of the NCEP signal is (on average) smaller than that
predicted by the ET KF. To analyze the uncertainty in our
estimate of the scaling factor due to sub-sampling, we
remove a data set corresponding to one of the 30 ver-
ification regions, and re-calculate the best fit line in the
same manner as in Fig.4b. This is done for all verification
data sets. The 30 best fit lines in Fig.4c demonstrate that
the variability is usually small, and hence the the linear
relationship between ET KF and NCEP signal variance at
the verification time is generally robust.

The next step is to test the relationship between
the NCEP forecast signal variance and the reduction in
NCEP forecast error variance due to the targeted obser-
vations. The NCEP forecast error at a verification loca-
tion is approximated by the difference between the fore-
cast initialized at time t,, and the NCEP analysis made
at time ¢;. Using a similar technique to that shown in
Fig.4, the NCEP sample signal variance in each of the
5 groups is given by the sample average of the squared
NCEP signals. The reduction in NCEP forecast error vari-
ance is calculated by averaging over all realizations of the
reduction in squared NCEP forecast error in each group.
A monotonic increasing relationship is found between the
NCEP signal variance and reduction in forecast error vari-
ance (Fig.5). If errors grew linearly and error covariances
were specified accurately, one would have expected this
relationship to be linear and of unit gradient. Since a lin-
ear gradient could not be established here, we fit a cubic
spline to indicate the nature of the relationship.
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FiG. 6: 99% confidence limits and best fit spline for the
reduction in NCEP forecast error variance as a function
of the ET KF signal variance, rescaled by a factor of ~14.

Combining the rescaling factor of approximately 14
for the best fit line of Fig.4b with the best spline of
Fig.5, the new optimal relationship between ET KF sig-
nal variance and NCEP forecast error variance reduction
is shown in Fig.6. While the error bounds in this relation-
ship are fairly large, the potential of using the ET KF to
predict the reduction in NCEP forecast error variance is
demonstrated. With more confidence, these values could
in turn be translated into meteorological or economic es-
timates of the likelihood of forecast improvements for any
future deployment of targeted observations.

3. CONCLUSIONS

The ability of an Ensemble Transform Kalman Filter (ET
KF) to predict (1) the NCEP signal variance and (2) the
reduction in NCEP forecast error variance due to targeted
dropsonde observations was tested, in a first step to-
ward quantifying predictability. A linear, increasing rela-
tionship between the ET KF and NCEP signal variances
was found to exist (a) at all observation locations selected
on 12 observing days during WSRO0, and (b) over 30
chosen verification regions of interest, at the verification
time. However, the ET KF consistently over-predicted the
operational signal variance by a factor of 8 at the analysis
(targeting) time and 14 at the verification time. A statis-
tical rescaling factor was therefore introduced to correct
the ET KF’s prediction of signal variance. Furthermore, a
monotonically increasing, but non-linear, relationship was
found to exist between the NCEP forecast signal variance
and the reduction in NCEP forecast error variance. Using
the rescaling factor of 14, the forecast error variance re-
ducing effect of targeted observations was graphed as an
approximate function of the ET KF signal variance.
These results were achieved despite the fact that
background error covariances currently assumed by
NCEP’s 3D-Var data assimilation scheme and those as-
sumed by the ET KF are very different. It is expected

that error covariances produced by an ET KF would be
more similar to those produced by new adjoint-based and
ensemble-based schemes than the quasi-isotropic error
covariances produced by 3d-Var. Hence, the above re-
sults, which also need to be evaluated for larger data
samples, are likely to improve further in the future.

Regardless of the form of future data assimilation
schemes, the method of statistically correcting the ET KF
predictions described here provides a means by which
past targeted observations can be used to improve the
reliability of ET KF predictions of the error reducing effi-
cacy of future targeted observations.
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