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1. INTRODUCTION 
     
As operational weather support moves in to the new 
century, we are seeing a vast increase in the number of 
available observations based on the maturation of 
internet and web and the expansion of weather 
observing networks for an ever-increasingly weather-
oriented user community.  
 
The modernization of the US National Weather Service 
has created great opportunities for expanding the 
amount of surface data for local operational 
forecasting. Utilizing a system called the Local Data 
Acquisition and Dissemination System (LDAD: 
Jesuroga, et al.,1998) the porting of a wide variety of 
local surface (and in some cases upper air) data is 
unprecedented. These data originate from state 
highway departments, agricultural networks, private 
industry, and schools.   
 
Some weather support functions have dense networks 
of surface and upper air data aimed at a specific  
mission (for example, space launch support). These 
facilities require frequent monitoring of weather 
conditions mandating a high frequency product cycle.  
This requires that immense numbers of observations 
be processed for quality, consistency, and timeliness 
over small time intervals. In these environments data 
from many diverse sources have to be amalgamated 
and time sequenced so that products being developed 
from the data suite are appropriate for a specific time. 
When analyzed meteorological products are needed at 
intervals of a few minutes it is inappropriate to utilize 
data that may be many product-cycles old. 
 
In the modern data environment one is thus presented 
with a difficult problem. How can we combine data 
coming from a wide variety of sensors, with varying 
error characteristics and operating at differing 
observational frequencies, to produce time-consistent 
sets of products that will be trusted by the user?  
Second, how can we meet the challenge of assimilating 
vast numbers of data of highly varying quality? Third, 
can we scale the problem to be economically feasible 
for local environments where high-speed computers 
may not be available? 
 
The answer to these questions is the focus of this 
paper: namely the development of a model running in 
observation space which uses Kalman filter (Kalman 
1960) principles to create a unique short-term 
prognostic model for every observing location. Once 
applied this Kalman model creates a surface database 
that is continuous in time, has predictable error 
characteristics, and has a full suite of representative 

observations at any instant. The benefits of such a 
model will be made evident:: constant data density, a 
bulletproof quality control, precise error estimates not 
much larger than the instrument itself, improved 
analyzed product continuity, short-range forecasts for 
surface stations, validation of NWP in forecasting 
surface conditions, and fast computational 
characteristics.  This work is a follow-on to previous 
work by McGinley and Stamus (1996 and 1998) 
  
2. THE SURFACE DATA PROBLEM 
 
At the NOAA Forecast Systems Laboratory we 
maintain a surface dataset that resembles a modern 
surface dataset as described. This abundant and 
diverse data has a wide range of: quality of 
maintenance (7day/24h to monthly) ; frequency of 
observation (1 min. to 3 h.); and frequency of 
communication (1 min. to 3 h.). The nonstandard 
nature of much of these data results in highly variable 
station counts from hour to hour (Fig 1) . 
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Fig. 1: Number of observation versus time (UTC) on 19 
March 2001, for the 11-state area in Fig. 2. Note that 
due to a data outage no surface data was available at 
0000 UTC on 20 March.  
 
3. THE KALMAN FILTER 
 
The Kalman filter (Kalman 1960; Kalman and Bucy, 
1961) deals with estimation of stochastic processes 
that are generated by randomly perturbed difference 
equations (Daley, 1991). The Kalman filter provides the 
means for updating estimates of an unknown process 



by combining observations of that process with a model 
of the process.  The Kalman filter has had wide 
application in prediction of spacecraft orbits, signal 
processing, and control, and in meteorology. The most 
successful applications have been where processes 
can be modeled with quasi-linear systems of equations.  
In our application we wish to advance a vector of 
processed station observations X , forward in time by 
the linear matrix operator F. The hatted quantity Xt is 
the Kalman estimate derived from the previous 
observational cycle X t-�t. 

 
The associated error covariance P, must be advanced 
forward in time by applying the forward model and 
adding cycle-averaged error covariance matrix W. 
Earlier work (McGinley and Stamus 1998) indicated 
that the best estimate for W comes from averaging  
more than 12 cycles (24 is chosen). 

The estimate of X is used as the new datum vector until 
the arrival of the new set of observations Y. When the 
new observations arrive, estimates of the error can be 
made and the error matrix W updated. The updated 
Kalman observation is then determined by adding the 
first estimate to the product of the Kalman gain K and  
the innovation vector made up of differences from the 
observations and the first estimate. 
     

 Above, K is the Kalman Gain, V is the observational 
error matrix, usually a diagonal matrix of known 
measurement error for surface data. For our application 
H is the identity matrix; superscript T is the transpose 
operator.  
 
 
 

 
3.1 The Forward Model F 
 
The forward model possesses components that a 
human would employ if given the task for manually 
estimating or predicting an observation based on past 
information. The method is based on consistent trends 
from data cycle to data cycle. The sources of trend 
information in a data environment would be provided 
by: 1) a trend from a station time series, 2) a trend 
information by the stations in the vicinity and 3) trends 
from numerical prediction products.  A forecaster 
estimating data would seek information from each of 
these sources, and over time would learn what 
components provide the best estimates. These are the 
attributes we seek in defining the forward model.  We 
specify that the model produce a composite trend from 
the three estimates and evolve the relative contribution 
of each based on past performance. Thus, F varies in 
time reacting to how well a station value is projected by 
trend from itself, buddies, or NWP. Limited space 
precludes showing the full forward operator.  The RUC 
model was used for the NWPcomponent; the Eta if the 
RUC was unavailable.  Resolutions for RUC and Eta 
were 40-and 32-km, respectively. 
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   3.2 Estimate of Truth 
 
Clearly the Kalman model is dependent on a truth 
estimate if we hope to get realistic error estimates.  We 
employ the principle that for a well-performing, 
unbiased instrument the observation extracted is 
distributed about truth as a Gaussian probability density 
function with zero mean and standard deviation of the 
RMS instrument error. It is also true is that given an 
observation, truth is distributed about the observation 
as a Gaussian PDF. We estimate truth using a 
Gaussian random number with zero mean and 
standard deviation of one and multiply this times the 
RMS observation error. While this is most likely a poor 
assumption for any given observation, over time for 
many, many truth extractions we likely get error 
statistics that are sound.  The observation used must 
past a gross error check prior to the truth estimate. 
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4. THE KALMAN OBSERVATIONS 
 
The Kalman estimates can be used in many ways. 
After setting up error thresholds and running the 



system in parallel, they can serve as rejection criteria 
for conducting gross and standard error checks. The 
user may opt for utilizing the Kalman suite of 
observations Xt  as a replacement for Y. Once the new 
observations Y arrive at time t, Xt  will be the optimum 
value given forward-model and observational accuracy. 
Xt will also provide values for missing stations. Product 
generation can be done with simple, efficient analysis 
schemes, making costly four-dimensional data 
assimilation unnecessary. The observation projection 
(hatted-X)  can serve as a short range forecast tool for 
individual stations. 
 
5. CASE STUDY 
 
An example of the Kalman scheme is shown for a time 
period of low data count for 19 March 2001 at 1600 
UTC. The Kalman scheme has processed over 800 
observations in the 11-state area shown in figs 2-5 in 
about 6 minutes on a PC-Linux platform. For this case 
just over 400 observations are processed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2. Each plot (not intended to be readable) indicates 
an observation for 1600 UTC 19 March 2001. A total of 
215 observations arrived. Below shows the same time 
with the complete set of Kalman-generated 
observations for a total of 432 observations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3a,b. Surface temperature analysis for 1600 UTC 
19 March 2001. On a, above, note the  lack of detail 
over the mountain areas where much of the data was 
lost. Below b shows the detail improved with use of the 
Kalman observations for the same time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6. SEASONAL PERFORMANCE OF THE FORWARD 
MODEL 
 
The Kalman scheme was run for a full year with nearly 
complete coverage for each season except summer 
(1.5 months represented). This provided an opportunity 
to evaluate the performance of the complete Kalman 
model and the individual components. The data vector 
contained estimates for temperature, dewpoint, vector 
winds, and MSL pressure. Fig. 4 illustrates the weight 



applied to each component of the forward model. The 
sum of the weights is normalized so equal performance 
of each component would result in a weight of 
0.33333…. 
For the results show in Figs. 4,6,7, the target is a 1-h 
temperature observation projection (one cycle). The 
target in Fig. 5 is a 1-h wind projection. Fig. 4  shows  
that the self trend and buddy trend perform close to 
equally well in all seasons. NWP does not do as well.  
 

Fig 4 Forward model weights for temperature for each 
of the three components: self trend, buddy trend and 
NWP trend. Weights total to 1.0. Low values indicate 
poor performance. Note that NWP is best during 
summer but lower than self trend and buddy trend 
through most of the year.  
 
Figure 5 shows the same characteristics  for winds. Here we 
see much better NWP performance, particularly in spring and 
summer. The seasons in question have better mixed 
boundary layers, and better coupling to the rest of the 
atmosphere may result in better surface prediction of winds. 

 
Fig. 5: Kalman model weights for vector wind for each of the 
three components: self trend, buddy trend, and NWP trend. 
Weights total to 1.0. Low values indicate poor performance. 
Note that NWP is best during spring and summer but lower 
than self trend and buddy trend through most of the year.  
 
With over 400 stations in the suite of data it is difficult to 
select a subset. However, it is instructive to look at 

errors for individual stations. In Fig. 6 we consider a set 
of stations representing conditions in the western plains 
and mountain regions. Stations selected are Denver 
(DEN: mountain lee); Salt Lake City (SLC: mountain 
basin) ; Goodland (GLD: plains) Farmington (FMN: 
mountain plateau); and Billings (BIL, mountain lee). 
Note the larger NWP errors in the mountain basin and 
lee areas and poor performance for temperature in the 
basin. However, NWP does a good job in at the lee 
stations.  
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Fig 6. Temperature error (F) for Denver, Salt Lake City, 
Goodland, Farmington, and Billings for winter 2001. 
 
For certain stations persistence was used as a model 
component to compare to the buddy and self trends. 
Figure 7 shows winter results for these stations, Helena 
(HLN, mountain lee) , Gallup ( GUP, mountain plateau), 
Hutchinson (HUT, plains) ; DPG (Dugway Proving 
Ground; mountain basin); Las Vegas, NM (LVS, lee). In 
every case except the mountain basin (DPG) the error 
using persistence is larger than NWP errors in similar 
regimes show in Fig. 6. Buddy and self trends perform 
better than persistence except at Las Vegas. 
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Fig. 7: Temperature error (F, x-axis) for self trend and 
buddy trend compared with persistence projections 
(persistence is a zero trend). All show persistence is 
inferior except at Las Vegas, NM, a lee station. 
 
7.THE KALMAN FILTER AS A SHORT-TERM 
FORECAST MODEL 
 
The Kalman Filter is able to sustain reasonably 
accurate observations while a station may be out of 
action. Figure 8 shows a plot for Aurora NE that had an 
outage for a number of hours. Note the consistency of 
the temperature and dewpoint trace based on 
continuing buddy and NWP trends. In this case hourly 
NWP trends are taken from the latest model guidance. 
When the observation reappears after 8 h we see that 
only minor error is evident in the Kalman observation.  
 
 

 
 
 
�

Fig. 8: Time series showing observations at Aurora, NE 
(temperature, dewpoint, and Kalman-created 
observations (T-Kal, TD-Kal) over an 18-hour period on 
22 March 2001. There are no observations from 0600-
1700 UTC yet the model keeps pace with diurnal 
cooling and when the observation reappears after 11 h 
only 2F temperature error and 1F dewpoint error result. 
 
A good test for the Kalman filter is to look at the 
projection error over periods of time longer than the 
one-hour data cycle. We can do this by compiling 
statistics in cases where a station vanishes for a period 
of hours as did Aurora, either routinely (a part-time site) 
or because of other problems. If we compute the error 
between the Kalman estimate and “truth” when this 
station reappears, we create forecast error statistics for 
any number of hours. The errors are binned by hour for 
all stations and are averaged for each season. The 
plots for temperature forecasts out to 12 hours are 
shown in Fig. 9. Note that errors less than 5F are 
common out to 4 h. 
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Fig. 9: Temperature error (F) for Kalman forecasts for 
large numbers of missing stations, as a function of  
forecast length (abcissa) for seasons as indicated. 
Spikes in trace indicate small samples for some hour 
bins. 
 
8. SUMMARY 
 
The Kalman model as discussed here is an appropriate 
tool for environments where data quality control is a 
high priority, where computer resources are limited, 
where data sources are diverse, and where short -
range forecasts are needed for point locations.  
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