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1. INTRODUCTION     
The forecast cloud ceiling over the Shuttle Landing 

Facility (SLF) at Kennedy Space Center (KSC) is a 
critical element in determining whether a GO or NO GO 
should be issued for a Space Shuttle landing.  However, 
the Spaceflight Meteorology Group (SMG) forecasters 
at Johnson Space Center (JSC) in Houston, TX indicate 
that the ceiling at the SLF is challenging to forecast, 
even in the short-term (0-6 hours) when persistence is 
assumed to be a reliable predictor.  The Applied 
Meteorology Unit (AMU) was tasked to develop a 
statistical cloud ceiling forecast technique to aid 
forecasters in this critical area. 

Two recent studies, Vislocky and Fritsch (1997, 
hereafter VF) and Hilliker and Fritsch (1999, hereafter 
HF) have shown success using statistical methods to 
improve the short-term ceiling forecast of the standard 
Federal Aviation Administration (FAA) Flight Rules (FR).  
In these studies, equations were developed that used 
conventional surface and upper-air rawinsonde data 
from the forecast site as well as surrounding stations.  
Their observations-based equations consistently out-
performed the benchmark persistence climatology 
equations.  These studies provided the basis for the 
AMU task methodology. 

The AMU task differed from VF and HF in two 
ways.  First, the previous studies used data from areas 
where persistent ceilings were known to exist.  Such 
conditions are not the norm in the subtropical 
environment of east-central Florida.  Second, the 
studies used standard FAA FR cloud ceiling categories 
as predictands.  The predictands in the AMU task were 
the ceiling thresholds as defined by the Space Shuttle 
FR (NASA/JSC 1997): 

• < 5000 ft (Return to Launch Site) 
• < 8000 ft (End of Mission) 
• < 10 000 ft (Navigation Aid Degradation) 

This paper will present the data and methods used 
in the equation development, a discussion on the 
predictors chosen and their importance in the 
equations, the results of equation performance testing, 
and a description of possible improvements to the 
methods used. 

2. DATA 
Hourly surface observational, rawinsonde, and 

buoy data were collected and examined for potential 
use in the equation development.  The stations 
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considered are shown in Figure 1.  The data from each 
station were examined to determine period of record 
(POR), the amount of missing data, and the quality of 
the data.  Those stations with inadequate PORs or an 
insufficient amount of quality data were eliminated from 
consideration. 

The stations whose data were used in the equation 
development are surrounded by squares in Figure 1.  
They include the Daytona Beach (DAB), Orlando 
(MCO), Patrick Air Force Base (COF), Melbourne 
(MLB), and SLF (TTS) hourly surface observations over 
a 20-year POR (1978 – 1997). 

 
Figure 1. Map of stations whose data were considered 
for the equation development.  The stars are hourly 
surface observations, the squares are rawinsondes, 
and the triangles are buoys.  The stations surrounded 
by squares were used in the equation development. 

Quality control routines were developed to remove 
gross outliers in the data, and then the data were 
analyzed to determine ceiling climatologies, temporal 
trends, and relationships between data types.  This 
analysis revealed that the largest number of ceilings at 
the SLF occurs in the cool season months of October 
through March, with a maximum at and just after 
sunrise in December and January.  On the other hand, 
very few ceilings were reported during the warm 
seasons (April – September).  As a result, the data were 
stratified by these two seasons.  Only the cool season 
data set was used to develop the equations. 



The data were further stratified into dependent and 
independent data sets.  Equation development was 
done with the dependent data, and equation verification 
wasdone with the independent data.  The dependent 
data set had to be sufficiently large in order to develop 
stable equations (WMO 1992).  There were 19 cool 
seasons in the POR and 16 were chosen randomly for 
the dependent data, leaving 3 cool seasons for the 
independent data set.  The equations were tested using 
the independent data to ensure that they were not 
strongly fitted to only the dependent data with which 
they were developed. 

3. EQUATION DEVELOPMENT 
Two types of equation sets were developed to 

forecast the probability of occurrence of the Shuttle FR 
ceiling height thresholds at TTS: observations-based 
(OBS) equations that incorporate data from TTS and all 
surrounding stations, and persistence climatology (PCL) 
equations to be used as the benchmark against which 
the OBS equations would be tested.  The binary 
observations (0 or 1) of the Shuttle FR ceiling height 
thresholds at TTS were the predictands, or weather 
element to be predicted, for both equation types.  Least 
squares multiple linear regression (MLR) was used as 
the statistical model for all the equations.  MLR 
equations have the form 

P = Co + C1x1 + C2x2 + … Cnxn, 

where P is the forecast probability, Cn represents the 
coefficient values and xn represents the predictor 
valuesEquations were developed using the cool season 
data for each of the three ceiling thresholds at 1-, 2-, 
and 3-hour lead times, and for each hour of the day.  
This procedure resulted in 216 equations for each 
equation type (3 lead times * 3 ceiling categories * 24 
hours). 

3.1. Observations-based Equation Development 
The OBS equation development began with 

predictor selection from a list of potential predictors as 
shown in Table 1.  The choice of these predictors were 
based on those used in VF and HF combined with 
results from preliminary testing to determine which 
variables could be useful in cloud ceiling forecasting.  
Most of the predictors were binary values of several 
cloud parameters. 

The predictors were chosen using a forward 
stepwise regression utility in S-PLUS� (Insightful, Corp. 
1999).  The cutoff at which no additional predictors were 
selected was controlled by the change in the explained 
variance (R2) as each predictor was added to the 
equation.  If the predictor did not change R2 by more 
than 0.05% (Wilks 1995), the predictor was not added 
to the equation and the forward stepwise procedure was 
stopped. 

This procedure yielded an average of four to five 
predictors per equation, ranging from one to nine 
predictors.  In 212 of the 216 OBS equations, the 
predictor that explained the most variance was the 
observation of the predictand at the initial time.  In other 

words, the TTS ceiling height threshold observation was 
the most important predictor in forecasting the ceiling 
height threshold for every lead time.  This result is 
consistent with the findings in VF and HF. 

Table 1. List of potential predictors used for the 
OBS equation development.  The predictor value is 
1 if the observation satisfies the binary threshold 
otherwise it is 0.  “Continuous” means that the 
actual value of the variable was used. 

Variable Binary Threshold 
Ceiling Height < 10 000, < 8000, or < 5000 ft 
Total Cloud cover > 1/10, > 5/10, or > 9/10 

Wind Direction N (315-45°), E (45-135°), 
S (135-225°), W (225-315°) 

Precipitation Yes 
1st Cloud Deck < 10 000, < 8000, or < 5000 ft 
2nd Cloud Deck < 10 000, < 8000, or < 5000 ft 
3rd Cloud Deck < 10 000, < 8000, or < 5000 ft 
4th Cloud Deck < 10 000, < 8000, or < 5000 ft 
Wind Speed Continuous 
Temperature Continuous 
Dew Point Temp Continuous 
Dew Point Dep Continuous 

Other predictors chosen include the ceiling height 
category observations, cloud cover, and cloud deck 
observations from TTS and the other stations.  Wind 
direction, precipitation, and the continuous variables 
were rarely, if ever, chosen as an important predictor of 
cloud ceiling at TTS. 

Once the predictors were chosen, the MLR 
equations were developed using an S-PLUS� function.  
This function determined the constant (Co) intercept 
value and the coefficient (Cn) values for the predictors. 

3.2. Persistence Climatology Equation Development 
The PCL equations were developed to provide a 

benchmark against which to test the OBS equations.  
According to VF, PCL is a formidable benchmark for 
very short-range prediction of cloud ceiling. 

The PCL equations have only two predictors: 1) the 
observation of the predictand at the initial time, and 2) 
the climatology of the predictand at the forecast valid 
time.  The second term is a simple mean calculation of 
the number of ceiling events of each threshold for each 
hour of every day of the cool season.  Because the 
predictors were known a priori, a forward stepwise 
procedure, as used in the OBS equation development, 
was not needed.  The same S-PLUS� function 
developed to create the OBS equations was used to 
calculate the constant (Co) intercept value and the 
coefficient (C1 and C2) values for the predictors. 

4. RESULTS 
After the OBS and PCL equations were developed, 

they were used to make forecasts from all records in 



the independent data set.  The OBS forecasts were 
then tested against the PCL forecast for each hour of 
the day, lead time, and ceiling height threshold to 
determine if the OBS equations produced improved 
forecasts over those of the PCL equations. 

4.1 Quantitative Performance 
The mean square error (MSE) between the 

forecasts and observations were calculated using the 
equation 
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where n is the number of forecasts, fi is the OBS or PCL 
probability forecast and oi is the binary (0 or 1) 
observation of the ceiling height category at TTS.  The 
MSE values were then used in the following equation to 
determine whether the OBS equations produced a 
quantifiable improvement over the PCL equations: 

PI= [ ( EOBS – EPCL ) / ( E0 - EPCL ) ] x 100, 
where PI is the percent improvement, EOBS is the OBS 
equation MSE, EPCL is the PCL equation MSE and E0 is 
the MSE for a perfect forecast, which is zero in this 
case.  If PI is positive, the OBS equations produced an 
improvement over the PCL equations, and if PI is 
negative the OBS equations worsen the forecast. 

In order to test the performance of the OBS 
equations, the probability of detection (POD) and false 
alarm rate (FAR) were calculated for each equation.  
The POD and FAR were computed using the values 
from a standard contingency table, as shown below 
(Wilks 1995).  The observations were binary, 1 for Yes 
and 0 for No.  However, the forecasts were probability 
values between 0 and 1, inclusive, so values ≥ 0.5 were 
considered Yes forecasts and those < 0.5 were No 
forecasts. 
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The PI, POD, and FAR values for all 24 (each hour 
of the day) equations in each lead time/ceiling category 
were averaged and shown in Table 2.  All of the PI 
values are positive, indicating that the OBS equations 
produce an improvement over the PCL equations.  The 
smallest improvements were found for the 1-hour 
forecasts where it is assumed that persistence 
climatology is a strong performer.  Larger improvements 
were produced with the 2- and 3-hour forecasts, time 
periods over which persistence is likely to be less of a 
factor.  In general, PI also decreases as ceiling height 
decreases. 

The actual performance of the OBS equations is 
indicated by the POD and FAR values.  The POD 
values decrease rapidly with lead time and the FAR 
values increase rapidly in each ceiling category.  This 

may indicate that the observation at TTS is becoming 
less valid as a predictor for increasing lead time, as well 
as the observations at the other stations.  The values 
also degrade with decreasing ceiling height.  This may 
be a result of fewer cases of the lower ceiling 
categories available for the equation development.  The 
0.5 threshold may also be an inappropriate value in 
determining a Yes/No forecast, although not tests were 
done to determine what value should be used.  The 
appropriate value would depend on whether the user 
wished to maximize POD or minimize FAR. 

Table 2. Average values of I, POD, and FAR for 
the OBS forecasts using the independent data.  
Each average was calculated from the 24 values 
generated by each hourly equation. 

Lead Time by 
Ceiling Height PI POD FAR 

10 000 ft    
1-Hour 11.9 0.83 0.16 
2-Hour 15.2 0.73 0.21 
3-Hour 14.9 0.67 0.25 

8000 ft    
1-Hour 10.0 0.83 0.17 
2-Hour 13.5 0.70 0.23 
3-Hour 13.6 0.63 0.27 

5000 ft    
1-Hour 8.8 0.80 0.18 
2-Hour 11.9 0.65 0.24 
3-Hour 13.4 0.54 0.27 

4.2 Hypothesis Testing 
A hypothesis test was used to determine whether 

the OBS equation improvement, PI, was statistically 
significant.  The null hypothesis was that the mean of 
the differences between the OBS and PCL equation 
MSE values is zero.  This implies that the two equation 
types produced forecasts of equal value.  If the 
improvement of the OBS equations over the PCL 
equations was significant, the null hypothesis could be 
rejected. 

Several charts of MSE differences (not shown) 
showed non-Gaussian distributions, therefore the non-
parametric Wilcoxon Signed Rank test (Wilks 1995) 
was chosen to determine statistical significance.  For 
every lead time and ceiling category, the improvement 
in skill created by the OBS equations was significant at 
the 99% confidence level.  Therefore, the null 
hypothesis can be rejected and the OBS equations can 
be used knowing that they produce a more accurate 
forecast than the PCL equations. 

5. RECOMMENDATIONS 
Based on successful results found in the literature, 

the AMU developed observations-based short-range 
ceiling forecast equations that outperform persistence 
climatology.  However, the success achieved as 



described in the previous section must be tempered 
with other findings during the development.  The 
predictors in the OBS equations were only able to 
account for 55-60% of the variance in the data for the 1-
hour equations to 35-40% for the 3-hour equations.  
The VF equations were able to explain 85-90% of the 
variance with their predictors.  There are several 
possible explanations for the “missing variance”. 

One possible deficiency is that only hourly surface 
observations were used to develop the equations.  
Rawinsonde data were shown to improve the forecast in 
HF, but only by 0-3% and only in the hours immediately 
after the data were collected.  Other data, such as 
Geostationary Operational Environmental Satellite 
(GOES) images or soundings, radar, or input from data 
assimilation software may be needed to fill the gap. 

Another issue is that the data were grouped into a 
cool season data set, stratified only by time of day.  
This means that the equation used to make a 1-hour 
forecast of ceilings < 8000 ft at 1500 UTC will be 
applied every day from the beginning of October to the 
end of March.  This stratification was necessary to 
ensure that the number of ceiling events was large 
enough to develop robust equations valid for each hour 
of the day.  In the period from October to March, several 
meteorological phenomena could be responsible for the 
development of ceilings in east-central Florida.  A 
phenomenological stratification of the data would be 
time-consuming, but may be useful in developing more 
accurate forecast equations. 

Nonetheless, the OBS equations developed in this 
study are still useful in that they are an improvement 
over persistence climatology.  They provide the 
forecasters at SMG another tool with which to make the 
ceiling forecasts critical to safe Shuttle landings at KSC.  
Combined with other observational and model data, as 
well as forecaster experience, these equations will likely 
help to improve the ceiling forecasts at the SLF. 

Notice:  Mention of a copyrighted, trademarked, or 
proprietary product, service, or document does not 
constitute endorsement thereof by the author, ENSCO, 
Inc., the AMU, the National Aeronautics and Space 
Administration, or the United States Government.  Any 
such mention is solely for the purpose of fully informing 
the reader of the resources used to conduct the work 
reported herein. 
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