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1. INTRODUCTION 
 
The Local Analysis and Prediction System (LAPS) 

analyzes three-dimensional moisture and other state 
variables each hour (or less) over a high resolution 
relocatable domain.  LAPS analyses have been used to 
initialize local-scale, high-resolution models such as the 
Colorado State University’s Regional Atmospheric 
Modeling System (RAMS) model and NCAR’s MM5 
(mesoscale model, version 5) on a routine basis as a 
means to utilize local data in the forecast model. LAPS 
has been integrated into the Advanced Weather 
Information Processing System (AWIPS) as part of the 
National Weather Service (NWS) modernization. 
Research to expand LAPS capabilities is one avenue 
toward providing advanced technologies and new 
innovations to the operational forecaster.   
 

This paper describes work in progress and the next 
step toward advancing the variational technique in the 
LAPS moisture analysis.  To date, the variational step 
has been used only with GOES sounder radiances.  
Other moisture variables were analyzed separately and 
either merged with that variational result or with the 
background field prior to the variational step 
(Birkenheuer 2000, 1999).  This change will enable the 
use of more data in the variational framework.  The 
solution strategy allows different data sources to be 
represented by different terms in the minimized 
functional.  The functional can be automatically 
adjusted to match the datasets present.  More 
important, this approach accommodates nonlinear 
functionals. 
 
1.1 Brief History of LAPS 

 
Under development since 1990, LAPS combines 

nationally disseminated data with local data for real-
time objective analyses of all data available to the local 
weather forecast office.  LAPS analyses are of suitable 
quality to initialize local-scale forecast models.  Such 
models can address specific problems of a small 
forecast domain with greater detail than can be 
achieved with nationally disseminated model guidance 
(Snook et al. 1998). 
 

The LAPS system is routinely tested with new data 
sources and innovative improvements, using more 

"conventional" data, which have potential for national 
dissemination.  
 

During the 1980s FSL conducted forecast 
exercises to test its workstation prototypes.  
Forecasters were burdened with the impossible task of 
reviewing all the incoming data made possible through 
new technologies, while producing timely forecasts. It 
became obvious that local data needed to be 
objectively analyzed in conjunction with nationally 
disseminated data.  Conceived as a resolution to this 
challenge, LAPS was designed to analyze all local data 
in real time on an affordable computer workstation and 
use its own output fields to initialize local-scale forecast 
models.  So far LAPS has been interfaced with RAMS 
and MM5, but it can function with any weather 
prediction model.  A more detailed review of LAPS is 
available in McGinley et al. (1991). 
 

LAPS integrates all state-of-the-art data as they 
become routinely available to a field forecast office.  
Advanced data include Doppler reflectivity and velocity 
fields, satellite observations including GOES infrared 
(IR) image data in AWIPS format, wind profiler data, 
automated aircraft reports, and dual-channel ground-
based radiometer data.   New data sources included 
here are GOES-derived layer precipitable water data 
(GVAP), and Global Positioning System (GPS) data.  
 
2.    LAPS MOISTURE ANALYSIS 
 

The specific humidity (SH) module is one of 17 
LAPS algorithms that span everything from data 
preparation and quality control (QC) to actual analysis.  
In addition to state variables, LAPS also produces 
highly specific analyses of special interest, such as 
aircraft icing threat and relative humidity, both with 
respect to mixed and liquid phases.   
 
2.1  Background Setup 
 

Like most analysis systems, LAPS needs a starting 
field, which it later modifies by adding information from 
other datasets.   This background or first-guess field for 
the test discussed here is FSL’s Mesoscale Analysis 
and Prediction System (MAPS) analysis.  Updated 
each hour, MAPS is the development model of the 
operational Rapid Update Cycle (RUC-2) at the 
National Center for Environmental Prediction (NCEP).  



The background model moisture data are interpolated 
to the denser LAPS grid and reconciled with the LAPS 
temperature analysis to avoid supersaturation. 
 
2.2  Boundary Layer Moisture 
 

The boundary layer moisture module utilizes 
surface humidity and mixes this into the calculated 
boundary layer by augmenting the moisture in the low 
levels of the 3-D grid.  In the new system, the 
variational adjustments are allowed to modify the low-
level moisture values, a change from the earlier 
algorithm. 

 
2.3  GVAP and GPS Pre-analysis 
 

The GVAP and GPS fields are individually 
preanalyzed prior to the variational step.  This is done 
to specify data at all grid points.  The preanalysis 
consists of a simple nearest grid point assignment of 
the observation, and a smoothed interpolated field 
between observation locations.  In addition to the three 
GVAP fields (one for each sigma layer) and the one 
GPS field, each field has a corresponding weighting 
function.  The spatial weight controls the horizontal 
influence of the data field at grid points near the one 
that represents the observation.  This includes the 
spatial influence of observations and other error factors 
(i.e., limb effects for microwave data, a possible future 
consideration).  In addition, data latency (temporal 
considerations) can be set up to modify data source 
influence in the variational step in this same function. 
 
 
2.4  The Expanded Variational Adjustment 
 

The variational adjustment using GOES radiances 
(Birkenheuer 1999) is being expanded to include GVAP 
layer precipitable water (over the column water 
previously analyzed), GPS total column water, and 
cloud information in one step.  The cloud information is 
made available from the LAPS cloud analysis (Albers et 
al. 1996).  The cloud analysis utilizes aircraft and 
surface reports, in addition to GOES visible and 
infrared satellite image data,and describes cloud 
vertical extent and horizontal distribution.  In this newly 
revised variational approach, the cloud analysis is 
allowed to influence utilization of other data, specifically 
IR radiances. 
 
2.5 Cloud Saturation 
 

As a safeguard to assure consistency, a final 
check is made to the field to make sure that moisture is 
saturated in 100% cloudy areas with respect to the 
applicable water phase.     
 
2.6 Quality Control 
 

The final step in the SH algorithm is quality control.  
Each moisture value is compared to the LAPS analyzed 
temperature, and if supersaturated, it is reported and 

reduced to saturation.  Typically, supersaturation rarely 
occurs. 
 
3. DATA SOURCES 
 
3.1 GVAP Data 
 

GVAP data were obtained from the University of 
Wisconsin - Madison in real time on a daily basis 
(Menzel et al. 1998).  The new variational scheme 
scales the appropriate parts of the LAPS moisture 
column to fit each of the three layers provided by GVAP 
data.  The prior LAPS system only utilized total column 
GVAP water vapor data.  The GVAP layers (defined as 
surface to 0.9 sigma, 0.9 to 0.7 sigma, and 0.7 to 0.3 
sigma) are converted to a pressure coordinate system 
as part of the GVAP preanalysis.  GVAP data have a 
nominal latency of 2 h at the current time.  

 
3.2 GPS Data 
 

GPS data are acquired from derived total column 
water vapor from signal delay (Wolfe et al., 2000).  
These data are real-time with a characteristic latency of 
20 min.  GPS data are immune from cloud effects, and 
therefore can be used where clouds are present.  This 
capability is incorporated in the new functional of the 
variational analysis. 

 
3.3 Cloud Data 
 

Cloud data are obtained from the LAPS cloud 
analysis, which relies on satellite image data in addition 
to Doppler radar, ACARS, surface-based observations 
of sky conditions, and pilot reports.  These data define 
clear fields of view for the variational adjustment, help 
saturate the atmosphere in cloudy regions, and 
influence the moisture analysis in partly cloudy regions. 
 
4. VARIATIONAL FORMALISM 

 
The mathematical formalism of the variational 

procedure is presented in equation 1.   The advantage 
of this approach is that it offers a robust method for 
operational application and can accommodate 
nonlinear terms.  
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Each term in (1) is modified by the variable S, which is 
a switch (with the exception of the background term 
which is always on).  Thereby, the terms can be used 

(1) 



or not used depending on whether or not data are 
available or if clouds are present.  Furthermore, a user 
can easily add terms for new data sets by simply 
creating a new term.  Here the variables are as follows: 
 
• Ci the coefficient vector applied to q to adjust the 

moisture field. Ideally this would have the same 
dimensions as q has levels, but may be reduced 
depending on computer horsepower.  Adjustment 
of this parameter is in essence the variational fit to 
the solution, i.e., ciq becomes the adjusted q field.  
The adjustment coefficient is a scalar with a lower 
limit of 0 (never negative).  A value of 1 indicates 
no change to the background.  Because of this, the 
system will only work with a quantity such as 
temperature or humidity that uses absolute units.  
For example, using this approach to analyze 
temperature in degrees F will fail. 

• q the specific humidity profile at one LAPS grid point 
• R the forward-modeled radiance or radiance 

observation with the superscript o. 
• i index for the LAPS vertical (vector dimension of q), 

with a current maximum of 40 (accommodating the 
climatological stratospheric layers needed for the 
forward radiance model). 

• k the index indicating the satellite sounder or imager 
channel used. 

• QGPS the total precipitable water measurement from 
GPS. 

• E the error function (squared quantity) that describes 
the observation or background error, subscripted 
by observation type. 

• L spatial weighting term subscripted by observation 
type.  This weights the smoothed (preanalyzed) 
field value by its proximity to the observation and 
reflects the horizontal influences of the 
measurement.  Each data source has an 
associated gridded field of spatial-weighting terms 
characterizing its proximity to the observation and 
its spatial representation. 

• P the function to convert from pressure to sigma 
coordinates  

• QGVAP the GOES vapor total precipitable water layer 
data.  The layers are defined in sigma coordinates 
and vary grid point to grid point. 

• j the index of the GVAP layer, with a current 
maximum of 3 (1 is lowest, 3 is highest). 

• Cld cloud function designating cloudy regions in the 
vertical, with dimensions of q. 

• J the functional to be minimized. 
• t is the temperature profile (LAPS) at the same 

location as q. 
• S logical switch for the observation type to be present 

or not.  Each term in the functional can be easily 
included or excluded depending on the presence 
of the data source.  Also new data sources can be 
added by including new terms. 

• qs(t) saturated q as a function of temperature. 
• g cloud fraction indicator as a function of level.  
• G a function of g such that it indicates cloud in the 

column. For radiance measurements, this has the 

advantage of disabling IR terms including GVAP.  
Finally, the GPS term would be unaffected by 
clouds in principle since the data source can 
deliver data in cloudy areas.  However, the 
analysis needs to probably give more credence to 
the cloud field since it is vital the cloud field 
complements the moisture field ensuring that two 
fields don’t conflict.  G can be a linear function of 
cloud such that it might serve to help define partly 
cloudy regions by allowing a smooth gradient from 
total through partly cloudy to clear air. 

• GT is a similar function to G, but it may be nonlinear 
and can match the satellite radiometer’s field of 
view.  

 
5. SOLUTION METHODOLOGY 
 

The minimization of (1) is accomplished using the 
same methods as the prior moisture analysis.  The 
Powell method (Brent 1973) employs a multidirectional 
search to seek out a solution.  Typically two to five calls 
of the algorithm are required to solve the function.  
Each call to the numeric method involves 25 or so 
functional calls.  Although more efficient methods are 
available, this technique has worked reliably to date.  
Model adjoints are not required for this technique. 
 
6. EXAMPLE 
 

A qualitative example of the new analysis is shown in 
Figs. 1 and 2.  Figure 1a, shows a midlevel com-
parison (600-hPa relative humidity plot) of the 

  

Fig. 1a. The older analysis of the 600 hPa RH 
(contours at 10% intervals) showing analyzed cloud 
(grayscale) over the LAPS Regional Observing 
Cooperative (ROC) domain (17 April 2001). 

former analysis with the newer adaptation of the 
variational method (Fig. 1b).  Similarly, Figs. 2a and 2b 
show a high-level example at 400 hPa from the same 
time.  Note that the cloud field is denoted as a white 
area, contours are at 10% RH intervals.  The newer 



variational approach appears to capture more humidity 
structure away from the cloud.  Furthermore, the 
gradient about the cloud appears more gradual 

 

Fig. 1b Same as Fig. 1a with the newer variational 
method using clouds and GVAP data. 

and perhaps is more realistic.  More validation is 
required to establish that the new method is rendering a 
more accurate analysis.  
 

 

Fig. 2a Older analysis of 400-hPa RH for the same 
time as in Fig. 1. 

 

 

Fig. 2b  Similar to Fig. 1b except at 400 hPa. 

 
7. SUMMARY 
 

The new functional solution is now being tested 
with broader focus on the run times and feasibility of 
real-time operation.  These aspects of the algorithm 
look promising, even for AWIPS-type resources.  Error 
functions are currently approximated and will require 
refinement.  For this case GPS data were not used 
since they remain under development. 

 
6. REFERENCES 
 
Albers, S., J. McGinley, D. Birkenheuer, and J. Smart 1996: The Local 

Analysis and Prediction System (LAPS): Analyses of clouds, 
precipitation, and temperature. Wea. Forecasting, 11, 273-287. 

 
Birkenheuer, D., 2000: Progress in applying GOES-derived data in 

local data assimilation, 10th Conf. on Satellite Meteorology and 
Oceanography, Amer. Meteor. Soc., Long Beach, CA, 70-73.   

 
________, 1999: The effect of using digital satellite imagery in the 

LAPS Moisture Analysis. Wea. Forecasting, 14, 782-788. 
 
Brent, R.P., 1973: Algorithms for Minimization without Derivatives.  

Prentice-Hall, Chapter 7. 
 
McGinley, J. A., S. Albers, and P. Stamus, 1991: Validation of a 

composite convective index as defined by a real-time local 
analysis system.  Wea.  Forecasting, 6, 337-356. 

 
Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner, G. 

S. Wade, and D. G. Gray, 1998: Application of GOES-8/9 
Soundings to weather forecasting and nowcasting. Bull. Amer. 
Meteor. Soc., 79, 2059-2077. 

 
Snook J. S., P. A. Stamus, J. Edwards, Z. Christidis, and J. A. 

McGinley, 1998: Local-domain mesoscale analysis and forecast 
model support for the 1996 Summer Olympic Games. Wea. 
Forecasting, 13, 138-150.  

 
Wolfe, Daniel E., Seth I. Gutman, 2000: Developing an Operational, 

Surface-Based, GPS, Water Vapor Observing System for NOAA: 
Network Design and Results. J. Atmos. Oceanic Technol., 17, 
426–440. 


