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1. INTRODUCTION

The Local Analysis and Prediction System (LAPS)
analyzes three-dimensional moisture and other state
variables each hour (or less) over a high resolution
relocatable domain. LAPS analyses have been used to
initialize local-scale, high-resolution models such as the
Colorado State University’s Regional Atmospheric
Modeling System (RAMS) model and NCAR's MM5
(mesoscale model, version 5) on a routine basis as a
means to utilize local data in the forecast model. LAPS
has been integrated into the Advanced Weather
Information Processing System (AWIPS) as part of the
National Weather Service (NWS) modernization.
Research to expand LAPS capabilities is one avenue
toward providing advanced technologies and new
innovations to the operational forecaster.

This paper describes work in progress and the next
step toward advancing the variational technique in the
LAPS moisture analysis. To date, the variational step
has been used only with GOES sounder radiances.
Other moisture variables were analyzed separately and
either merged with that variational result or with the
background field prior to the variational step
(Birkenheuer 2000, 1999). This change will enable the
use of more data in the variational framework. The
solution strategy allows different data sources to be
represented by different terms in the minimized
functional. The functional can be automatically
adjusted to match the datasets present. More
important, this approach accommodates nonlinear
functionals.

1.1 Brief History of LAPS

Under development since 1990, LAPS combines
nationally disseminated data with local data for real-
time objective analyses of all data available to the local
weather forecast office. LAPS analyses are of suitable
quality to initialize local-scale forecast models. Such
models can address specific problems of a small
forecast domain with greater detail than can be
achieved with nationally disseminated model guidance
(Snook et al. 1998).

The LAPS system is routinely tested with new data
sources and innovative improvements, using more
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"conventional" data, which have potential for national
dissemination.

During the 1980s FSL conducted forecast
exercises to test its workstation prototypes.
Forecasters were burdened with the impossible task of
reviewing all the incoming data made possible through
new technologies, while producing timely forecasts. It
became obvious that local data needed to be
objectively analyzed in conjunction with nationally
disseminated data. Conceived as a resolution to this
challenge, LAPS was designed to analyze all local data
in real time on an affordable computer workstation and
use its own output fields to initialize local-scale forecast
models. So far LAPS has been interfaced with RAMS
and MM5, but it can function with any weather
prediction model. A more detailed review of LAPS is
available in McGinley et al. (1991).

LAPS integrates all state-of-the-art data as they
become routinely available to a field forecast office.
Advanced data include Doppler reflectivity and velocity
fields, satellite observations including GOES infrared
(IR) image data in AWIPS format, wind profiler data,
automated aircraft reports, and dual-channel ground-
based radiometer data. New data sources included
here are GOES-derived layer precipitable water data
(GVAP), and Global Positioning System (GPS) data.

2. LAPS MOISTURE ANALYSIS

The specific humidity (SH) module is one of 17
LAPS algorithms that span everything from data
preparation and quality control (QC) to actual analysis.
In addition to state variables, LAPS also produces
highly specific analyses of special interest, such as
aircraft icing threat and relative humidity, both with
respect to mixed and liquid phases.

2.1 Background Setup

Like most analysis systems, LAPS needs a starting
field, which it later modifies by adding information from
other datasets. This background or first-guess field for
the test discussed here is FSL's Mesoscale Analysis
and Prediction System (MAPS) analysis. Updated
each hour, MAPS is the development model of the
operational Rapid Update Cycle (RUC-2) at the
National Center for Environmental Prediction (NCEP).



The background model moisture data are interpolated
to the denser LAPS grid and reconciled with the LAPS
temperature analysis to avoid supersaturation.

2.2 Boundary Layer Moisture

The boundary layer moisture module utilizes
surface humidity and mixes this into the calculated
boundary layer by augmenting the moisture in the low
levels of the 3-D grid. In the new system, the
variational adjustments are allowed to modify the low-
level moisture values, a change from the earlier
algorithm.

2.3 GVAP and GPS Pre-analysis

The GVAP and GPS fields are individually
preanalyzed prior to the variational step. This is done
to specify data at all grid points. The preanalysis
consists of a simple nearest grid point assignment of
the observation, and a smoothed interpolated field
between observation locations. In addition to the three
GVAP fields (one for each sigma layer) and the one
GPS field, each field has a corresponding weighting
function. The spatial weight controls the horizontal
influence of the data field at grid points near the one
that represents the observation. This includes the
spatial influence of observations and other error factors
(i.e., limb effects for microwave data, a possible future
consideration). In addition, data latency (temporal
considerations) can be set up to modify data source
influence in the variational step in this same function.

2.4 The Expanded Variational Adjustment

The variational adjustment using GOES radiances
(Birkenheuer 1999) is being expanded to include GVAP
layer precipitable water (over the column water
previously analyzed), GPS total column water, and
cloud information in one step. The cloud information is
made available from the LAPS cloud analysis (Albers et
al. 1996). The cloud analysis utilizes aircraft and
surface reports, in addition to GOES visible and
infrared satellite image data,and describes cloud
vertical extent and horizontal distribution. In this newly
revised variational approach, the cloud analysis is
allowed to influence utilization of other data, specifically
IR radiances.

2.5 Cloud Saturation

As a safeguard to assure consistency, a final
check is made to the field to make sure that moisture is
saturated in 100% cloudy areas with respect to the
applicable water phase.

2.6 Quality Control
The final step in the SH algorithm is quality control.

Each moisture value is compared to the LAPS analyzed
temperature, and if supersaturated, it is reported and

reduced to saturation. Typically, supersaturation rarely
occurs.

3. DATA SOURCES
3.1 GVAP Data

GVAP data were obtained from the University of
Wisconsin - Madison in real time on a daily basis
(Menzel et al. 1998). The new variational scheme
scales the appropriate parts of the LAPS moisture
column to fit each of the three layers provided by GVAP
data. The prior LAPS system only utilized total column
GVAP water vapor data. The GVAP layers (defined as
surface to 0.9 sigma, 0.9 to 0.7 sigma, and 0.7 to 0.3
sigma) are converted to a pressure coordinate system
as part of the GVAP preanalysis. GVAP data have a
nominal latency of 2 h at the current time.

3.2 GPS Data

GPS data are acquired from derived total column
water vapor from signal delay (Wolfe et al., 2000).
These data are real-time with a characteristic latency of
20 min. GPS data are immune from cloud effects, and
therefore can be used where clouds are present. This
capability is incorporated in the new functional of the
variational analysis.

3.3 Cloud Data

Cloud data are obtained from the LAPS cloud
analysis, which relies on satellite image data in addition
to Doppler radar, ACARS, surface-based observations
of sky conditions, and pilot reports. These data define
clear fields of view for the variational adjustment, help
saturate the atmosphere in cloudy regions, and
influence the moisture analysis in partly cloudy regions.

4. VARIATIONAL FORMALISM

The mathematical formalism of the variational
procedure is presented in equation 1. The advantage
of this approach is that it offers a robust method for
operational application and can accommodate
nonlinear terms.
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Each term in (1) is modified by the variable S, which is
a switch (with the exception of the background term
which is always on). Thereby, the terms can be used



or not used depending on whether or not data are
available or if clouds are present. Furthermore, a user
can easily add terms for new data sets by simply
creating a new term. Here the variables are as follows:

» C, the coefficient vector applied to g to adjust the
moisture field. ldeally this would have the same
dimensions as q has levels, but may be reduced
depending on computer horsepower. Adjustment
of this parameter is in essence the variational fit to
the solution, i.e., cq becomes the adjusted g field.
The adjustment coefficient is a scalar with a lower
limit of O (never negative). A value of 1 indicates
no change to the background. Because of this, the
system will only work with a quantity such as
temperature or humidity that uses absolute units.
For example, using this approach to analyze
temperature in degrees F will fail.

* q the specific humidity profile at one LAPS grid point

« R the forward-modeled radiance or radiance
observation with the superscript o.

* iindex for the LAPS vertical (vector dimension of q),
with a current maximum of 40 (accommodating the
climatological stratospheric layers needed for the
forward radiance model).

» k the index indicating the satellite sounder or imager
channel used.

. QGF’S the total precipitable water measurement from
GPS.

» E the error function (squared quantity) that describes
the observation or background error, subscripted
by observation type.

» L spatial weighting term subscripted by observation
type. This weights the smoothed (preanalyzed)
field value by its proximity to the observation and
reflects the horizontal influences of the
measurement. Each data source has an
associated gridded field of spatial-weighting terms
characterizing its proximity to the observation and
its spatial representation.

» P the function to convert from pressure to sigma
coordinates

« QY the GOES vapor total precipitable water layer
data. The layers are defined in sigma coordinates
and vary grid point to grid point.

* j the index of the GVAP layer, with a current
maximum of 3 (1 is lowest, 3 is highest).

» Cld cloud function designating cloudy regions in the
vertical, with dimensions of q.

+ J the functional to be minimized.

t is the temperature profile (LAPS) at the same

location as g.

» Slogical switch for the observation type to be present
or not. Each term in the functional can be easily
included or excluded depending on the presence
of the data source. Also new data sources can be
added by including new terms.

» Qs(t) saturated q as a function of temperature.

* g cloud fraction indicator as a function of level.

» G a function of g such that it indicates cloud in the
column. For radiance measurements, this has the

advantage of disabling IR terms including GVAP.
Finally, the GPS term would be unaffected by
clouds in principle since the data source can
deliver data in cloudy areas. However, the
analysis needs to probably give more credence to
the cloud field since it is vital the cloud field
complements the moisture field ensuring that two
fields don’t conflict. G can be a linear function of
cloud such that it might serve to help define partly
cloudy regions by allowing a smooth gradient from
total through partly cloudy to clear air.

» GT is a similar function to G, but it may be nonlinear
and can match the satellite radiometer's field of
view.

5. SOLUTION METHODOLOGY

The minimization of (1) is accomplished using the
same methods as the prior moisture analysis. The
Powell method (Brent 1973) employs a multidirectional
search to seek out a solution. Typically two to five calls
of the algorithm are required to solve the function.
Each call to the numeric method involves 25 or so
functional calls. Although more efficient methods are
available, this technique has worked reliably to date.
Model adjoints are not required for this technique.

6. EXAMPLE

A qualitative example of the new analysis is shown in
Figs. 1 and 2. Figure la, shows a midlevel com-

parison (600-hPa relative humidity plot) of the
N@AR/FSL

Fig. la. The older analysis of the 600 hPa RH
(contoursat 10% intervals) showing analyzed cloud
(grayscale) over the LAPS Regional Observing
Cooperative (ROC) domain (17 April 2001).

former analysis with the newer adaptation of the
variational method (Fig. 1b). Similarly, Figs. 2a and 2b
show a high-level example at 400 hPa from the same
time. Note that the cloud field is denoted as a white
area, contours are at 10% RH intervals. The newer



variational approach appears to capture more humidity
structure away from the cloud. Furthermore, the

gradient about the cloud appears more gradual
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Fig. 1b Same as Fig. 1a with the newer variational
method using clouds and GVAP data.

and perhaps is more realistic. More validation is
required to establish that the new method is rendering a
more accurate analysis.

Fig. 2a Older analysis of 400-hPa RH for the same
timeasin Fig. 1.

7. SUMMARY

The new functional solution is now being tested
with broader focus on the run times and feasibility of
real-time operation. These aspects of the algorithm
look promising, even for AWIPS-type resources. Error
functions are currently approximated and will require
refinement. For this case GPS data were not used
since they remain under development.

6. REFERENCES

Albers, S., J. McGinley, D. Birkenheuer, and J. Smart 1996: The Local
Analysis and Prediction System (LAPS): Analyses of clouds,
precipitation, and temperature. Wea. Forecasting, 11, 273-287.

Birkenheuer, D., 2000: Progress in applying GOES-derived data in
local data assimilation, 10th Conf. on Satellite Meteorology and
Oceanography, Amer. Meteor. Soc., Long Beach, CA, 70-73.

, 1999: The effect of using digital satellite imagery in the
LAPS Moisture Analysis. Wea. Forecasting, 14, 782-788.

Brent, R.P., 1973: Algorithms for Minimization without Derivatives.
Prentice-Hall, Chapter 7.

McGinley, J. A., S. Albers, and P. Stamus, 1991: Validation of a
composite convective index as defined by a real-time local
analysis system. Wea. Forecasting, 6, 337-356.

Menzel, W. P., F. C. Holt, T. J. Schmit, R. M. Aune, A. J. Schreiner, G.
S. Wade, and D. G. Gray, 1998: Application of GOES-8/9
Soundings to weather forecasting and nowcasting. Bull. Amer.
Meteor. Soc., 79, 2059-2077.

Snook J. S., P. A. Stamus, J. Edwards, Z. Christidis, and J. A.
McGinley, 1998: Local-domain mesoscale analysis and forecast
model support for the 1996 Summer Olympic Games. Wea.
Forecasting, 13, 138-150.

Wolfe, Daniel E., Seth I. Gutman, 2000: Developing an Operational,
Surface-Based, GPS, Water Vapor Observing System for NOAA:
Network Design and Results. J. Atmos. Oceanic Technol., 17,
426-440.



