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1. INTRODUCTION 
 

 The importance of accounting for model error in 
ensemble forecasting has been demonstrated by recent 
case studies for both medium- (Harrison et al. 1999) 
and short-range (Stensrud et al. 2000) forecasts and by 
the implementation of a stochastic representation of 
precipitation processes in an operational setting 
(Buizza et al. 1999). 

The present study is a first step toward extending 
the work of Stensrud et al. (2000) and beginning a 
systematic examination of the mixed-physics 
ensemble.  A mixed-physics ensemble is one in which 
the members contain different formulations of 
physical parameterizations.  As such, the ensemble 
can be used to examine the relative importance of 
different physical processes and relative effectiveness 
of individual parameterizations.  Herein, the emphasis 
will be on the probabili stic forecasts of precipitation. 

As explained by Murphy (1993), the “goodness” 
of a forecast involves not only quality but value, as 
well .  Furthermore, there exist several different 
aspects of forecast quality, including the famili ar 
measures of accuracy and skill along with aspects such 
as reliabilit y, sharpness, and discrimination, which are 
based on the joint distribution of forecasts and 
observations  (Murphy 1993).  An exhaustive 
examination of forecast goodness is beyond the scope 
of this paper but an attempt will be made to give a 
broad evaluation of the performance of the mixed-
physics ensemble. 

 
2. ENSEMBLE DESCRIPTION 
 

The ensemble system used in this study consists 
of nine members using identical initial conditions and 
all the different possible combinations of three 
convection parameterizations (CP) and three planetary 
boundary layer (PBL) schemes.  The three CPs are the 
Kain-Fristch (KF; Kain and Fristch 1993), Betts-
Mill er (BM; Betts and Mill er 1986), and Grell (GR; 
1993) schemes.  The PBLs employed are those 
developed by Blackadar (BL; 1979) and Burk and 
Thompson (BT; 1989), and the scheme used in the 
National Centers for Environmental Prediction’s 
(NCEP) Medium Range Forecast model (MF; Hong 
and Pan 1996).  These parameterizations are plugged 
into the Pennsylvania State University-National 
Center for Atmospheric Research Mesoscale Model 
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version 5 (MM5; Grell et al. 1994) with 30 km 
horizontal grid spacing and 23 vertical sigma levels, 
covering most of the contiguous United States.  The 
ensemble members are initialized from the 00Z NCEP 
Eta model analyses.  The data sets consist of 43 cases 
between April and June 1999 for which 36 h forecasts 
were made.  Twenty-four hour rainfall accumulations 
from the 4-km gridded analyses of nearly 3000 hourly 
raingage observations, available as part the NCEP’s 
Stage IV rainfall data, are used for verification.  The 
verification data are valid at 12Z, corresponding to the 
12-36h model forecast period. 
 
3. RESULTS 

 
3.1  Attributes diagram 

 
Several aspects of forecast quali ty can be 

examined through the use of an attributes diagram.  
The reader is referred to Wilks (1995) for a complete 
discussion of the features of attributes diagrams.  
Figure 1 shows an attributes diagram for forecasts of 
at least 0.01” of rain from the nine possible 8-member 
ensembles achieved by excluding, in turn, each 
member of the full ensemble.   

A primary feature of these curves is the lack of 
significant variation between the curves; the notable 
exception being the bifurcation at forecasts of 37.5%. 
Insight into the cause of this bifurcation is provided by 
the distribution of forecast probabiliti es for each 
ensemble (Fig. 1).  Again a split is seen at the forecast 
probabili ties of 25 and 37.5%.  The split distinguishes 
the six ensembles containing all three members using 
the BT PBL scheme and the three ensembles 
containing only two of the BT members.  The BT 
members possess a distinct wet bias for low 
precipitation thresholds (not shown).  Thus, the 
ensembles containing all three BT members are more 
likely to produce a forecast of 37.5% (3/8), whereas 
those containing only two of the BT members will 
favor forecasts of 25% (2/8). 

Another striking feature of Fig.1 is the high 
degree of sharpness to the forecasts.  Nearly 70% of 
all the forecasts come from the forecast probabilities 
zero and one.  In other words, the ensemble frequently 
provides very confident predictions of rain or no rain.  
However, the large number of forecasts of probabilit y 
zero or one could also indicate a lack of ensemble 
spread.  For a majority of the forecasts the ensemble 
members are in complete agreement. 

Curves along the 45° line indicate perfect 
reliabilit y (forecast probability equals the observed 
relative frequency), whereas curves falli ng along the 



diagonal lying between the perfect reliabilit y line and 
the climatological frequency (the horizontal l ine) 
indicate zero skill relative to a forecast based solely on 
climatology.  Thus the ensembles exhibit marginal 
skill for the forecasts probabil ities 0, 12.5, 25, and 
100% and no skill for all other probabiliti es. 

 

 
Fig. 1. Attributes diagram for 0.01” precipitation 
threshold and 8-member ensembles (top) and 
distribution of the relaitve use of  forecast 
probabiliti es (bottom). 
 

Finally, a reliabilit y curve located beneath the 
45° line indicates an overforecast (wet bias) while a 
curve above the 45° line indicates an underforecast 
(dry bias).  The ensembles overforecasts for the lowest 
forecast probabiliti es and underforecast the moderate 
and high probabiliti es.  The wet bias of the BT 
members is evidenced once again as the six ensembles 
with all three BT members overforecast at the 37.5% 
probabilit y while the other ensembles are nearly 
perfectly reliable at that probabil ity. 

Similar behavior is seen for each of these forecast 
quality aspects for ensembles comprised of fewer 
ensemble members and, to a lesser degree, at higher 
precipitation thresholds.  An ill ustration of this 
similarity is provided the behavior of the Brier score 
(BS) and Brier Skill score (BSS) (Fig. 2).  The BS and 
BSS are based entirely on information derived from 
the attributes diagram, namely the reliabilit y, 
resolution, and uncertainty (Wilks 1995).  The top 
panel shows the BS and BSS for 0.01” precipitation 
forecast for different ensembles comprised of eight 
down to four members.  The BS is nearly completely 
insensitive to the ensemble size or the different 

combinations of members for each ensemble size.  
Somewhat greater sensitivity to both the inter- and 
intragroup differences is seen for the BSS, with skill 
decreasing with decreased ensemble size but the 
sensitivity is still relatively slight.  The BS and BSS 
both drop more significantly as the precipitation 
threshold is increased to 1.00” (Fig. 2, bottom), but the 
description given above for the behavior of the 
different ensemble groups at the lower threshold 
applies equally for forecasts of higher-end events.  
Note that the ensembles exhibit negative skill for these 
forecasts of more significant rainfall amounts, 
meaning that a forecast based on climatology is more 
skil lful than the ensemble. 

 

 
 
Fig. 2. Brier Score (BS, closed box) and Brier Skil l 
Score (BSS, open box) for 0.01”  (top) and 1.00”  
(bottom) thresholds. The number along the abscissa 
indicates the number of ensemble members in that 
group. 
 
3.2  Relative Operating Characteristics 
 

Another aspect of forecast quality is 
discrimination, which examines the abilit y of forecasts 
to distinguish between events and nonevents.  For 
example, strong discrimination would result if events 
typically are preceded by high forecast probabilities 
and nonevents are typically preceded by low forecast 
probabili ties (Murphy 1993).  A measure of forecast 
discrimination that has become increasingly popular in 
recent years is the relative operating characteristic 
(ROC; Mason 1982).  For each possible forecast 
probabilit y threshold, the probabilistic forecast can be 
turned into a deterministic forecast by treating each 
probabilit y greater than the threshold as a ‘yes’ 
forecasts and each probabili ty below the threshold as a 
‘no’ forecast.  In this way, a hit rate (HR) and false 
alarm rate (FAR) can be calculated for each 
probabilit y threshold.  Plotting the array of HRs versus 
the array of FARs gives a ROC curve.  The area 
beneath this curve is a measure of the forecasts 
discrimination.  A ROC area equal to unity denotes 
perfect discriminatory abili ty while an area of 0.5 



denotes no discriminatory abilit y.  There are two 
methods for calculating the ROC area.  The most 
commonly used method is the trapezoidal rule, which 
is sensitive to the number of points along the curve 
(i.e., the number of precipitation thresholds, or in the 
present case the number of ensemble members).  The 
second method involves fitting a line to the ROC 
curve transformed into normal deviate space (Mason 
1982), resulting in a smoothed curve that is not 
sensitive to the number of ensemble members.  The 
former method can be thought of as a measure of the 
actual performance of the forecast system while the 
latter method can be thought of as a measure of the 
potential performance of the forecast system (e.g., of 
an infinite-member ensemble where each member 
possess similar abili ty to the present members) 
(Bamber 1975). 

 
Fig. 3. Fitted ROC area for the 8-member ensembles 
for the four precipitation thresholds. 
 

Figure 3 gives the smoothed ROC areas for the 8-
member ensembles for four precipitation thresholds 
(0.01” , 0.10” , 0.50” , and 1.00”).  Slightly more 
variabilit y is seen in the performance of the different 
ensemble configurations, but most of that variabilit y is 
not statistically significant to the 95% level, as shown 
by the error bars.  (The longer error bars for the higher 
thresholds reflect the substantially smaller sample size 
for events of that magnitude.)  Similar to the behavior 
of the BSS, the ROC areas do exhibit moderately 
greater variabilit y between the different precipitation 
thresholds than for the different configurations within 
each threshold.  The discrete ROC areas as determined 
by the trapezoidal rule (not shown) are somewhat 
lower in magnitude overall and display a decrease as 
the ensemble size decreases, as expected.  However, 
the different ensemble configurations within each size 
group behave in the same manner as for the smoothed 
curves. 

The peak in areas at 0.5” may at first appear 
counter-intuitive, as it is generally expected that 
rainfall forecasts become more difficult as the 
accumulation increases.  Namely, heavy rain events 
are very difficult to forecast.  However, 0.50” reflects 
more of a moderate rain event such that a strong signal 
may be present (e.g., a strong forcing mechanism) but 
the event is not so rare as to exceed the ability of the 
model to capture it. 

 
3.3 Value 

 
As stated in the introduction, forecast goodness 

involves value as well as quality.  It could be argued 

that value is a more important indicator of goodness 
than quality as it takes into account the users of the 
forecasts, as well .  Forecast value can be calculated 
directly from HRs and FARs used in the ROC curves.  
See Richardson (2000) for a comprehensive discussion 
on calculating the value of ensemble forecast systems.  
As with the BSS, forecast value is a relative measure 
such that a value of zero means that the forecasts 
provide no improvement over climatology and a value 
of unity denotes that the forecasts supply maximum 
benefit to the user.   

Figure 4 presents value curves for the different 
ensemble sizes as function of the cost-loss ratio (C/L).  
Every preventative action taken against an event 
incurs a cost.  The cost-loss ratio expresses this cost as 

 

 
Fig. 4. Value curves for the 0.01”  (top) and 1.00” 
(bottom) thresholds as a function of cost-loss ratio for 
the different ensemble sizes. 
 
a fraction of the potential loss protected by that action 
(Thompson 1950).  Once again the variation between 
different ensemble sizes is quite small , with the only 
discernable difference in the value curves occurring in 
the left wing of the 0.01” curves and in the maximum 
value of the 1.00” curves.  However, most real world 
users have low C/L (H. Brooks, personal 
communication) and so these differences can have 



significant impact.  For example, a user with a 
C/L=0.17 would get no value out of the 4-member 
ensemble, but would realize a 15% improvement with 
the 8-member ensemble.  Also, note that despite the 
negative skill possessed by the ensembles at the higher 
precipitation threshold (Fig. 2), the ensembles do offer 
positive value to a substantial segment of users. 

 
4. SUMMARY 
 

A preliminary evaluation of a mixed-physics 
ensemble has been presented following the framework 
of Murphy (1993).  The ensemble performs rather 
poorly for several aspects of forecast quality such as 
reliabilit y, accuracy and skill .  However, the ensemble 
is strong in the areas of sharpness and discrimination.  
Apparently these strengths balance the previously 
mentioned deficiencies such that the ensemble does 
provide substantial value to a wide range of potential 
users of the forecasts.  This points out the inadequecy 
of using only a few select measures of forecast 
goodness. 

Further research into the relationship between 
value and the various aspects of forecast quality is 
warranted.  Examination of the quality and value of 
the individual forecast members could aid in this 
endeavor.  Such analysis also could help in explaining 
the surprisingly small variabilit y in the quality and 
value measures as a function of ensemble 
configuration or as a function of ensemble size.  
Selective groupings of ensemble members would 
allow for comparisons between the different 
representations of the PBL and convective processes 
and help determine the relative importance of  the 
PBLs versus the CPs. 
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