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1. INTRODUCTION

The importance of acounting for model error in
ensemble foreasting has been demonstrated by recent
cese studies for bath medium- (Harrison et al. 1999)
and short-range (Stensrud et al. 2000) forecasts and by
the implementation o a stochastic representation of
predpitation processesin an operational setting
(Buizza ¢ a. 1999).

The present study is afirst step toward extending
the work of Stensrud et a. (2000) and keginning a
systematic examination d the mixed-physics
ensemble. A mixed-physics ensembleisonein which
the members contain different formulations of
physicd parameterizations. As such, the ensemble
can be used to examine the relative importance of
different physicd processes and relative effediveness
of individual parameterizations. Herein, the enphasis
will be on the probabili stic forecasts of predpitation.

Asexplained by Murphy (1993, the “goodness’
of aforecast involves nat only quality but value, as
well. Furthermore, there exist severa different
aspeds of forecat quality, including the famili ar
measures of accuracy and skill along with aspeds sich
as reliability, sharpness and dscrimination, which are
based on thejoint distribution o forecasts and
observations (Murphy 1993). An exhaustive
examination d forecast goodressis beyondthe scope
of this paper but an attempt will be madeto give a
broad evaluation d the performance of the mixed-
physics ensemble.

2. ENSEMBLE DESCRIPTION

The ensemble system used in this study consists
of nine members using identicd initial conditions and
all the different passble combinations of three
convedion parameterizations (CP) and threeplanetary
boundary layer (PBL) schemes. The threeCPs are the
Kain-Fristch (KF; Kain and Fristch 1993), Betts-

Mill er (BM; Betts and Mill er 1986), and Grell (GR;
1993) schemes. The PBLs employed are those
developed by Blackadar (BL; 1979) and Burk and
Thompson (BT; 1989), and the scheme used in the
National Centers for Environmental Prediction’s
(NCEP) Medium Range Forecat model (MF; Hong
and Pan 1996). These parameterizations are plugged
into the Pennsylvania State University-National
Center for Atmospheric Reseach Mesoscade Model
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version 5(MM5; Grell et al. 1994) with 30km
horizontal grid spadng and 23 verticd sigmalevels,
covering most of the mntiguous United States. The
ensemble members are initi ali zed from the 00Z NCEP
Etamodel analyses. The data sets consist of 43 cases
between April and June 1999 for which 36h forecasts
were made. Twenty-four hour rainfall acamulations
from the 4-km gridded analyses of nealy 3000 tourly
raingage observations, avail able & part the NCEP's
Stage 1V rainfall data, are used for verification. The
verification cata aevalid at 12Z, corresponding to the
12-36h model forecast period.

3. RESULTS
3.1 Attributes diagram

Severa aspeds of forecast quality can be
examined through the use of an attributes diagram.
The reader isreferred to Wilks (199%5) for a cmplete
discusson of the feaures of attributes diagrams.
Figure 1 shows an attributes diagram for forecasts of
at least 0.01” of rain from the nine possble 8-member
ensembles achieved by excluding, in turn, eah
member of the full ensemble.

A primary feature of these arvesisthe lad of
significant variation between the aurves; the notable
exception keing the bifurcation at forecasts of 37.5%.
Insight into the cause of thisbifurcationis provided by
the distribution of forecast probabiliti es for eath
ensemble (Fig. 1). Again asplit is e at the forecast
probabili ties of 25 and 375%. The split distinguishes
the six ensembles containing al threemembersusing
the BT PBL scheme and the three ensembles
containing only two of the BT members. The BT
members possessadistinct wet bias for low
predpitation thresholds (not shown). Thus, the
ensembles containing all threeBT members are more
likely to produce aforecast of 37.5% (3/8), whereas
thase mntaining only two of the BT members will
favor forecasts of 25% (2/8).

Ancther striking feaure of Fig.1 isthe high
degreeof sharpnessto the forecasts. Nealy 70% of
all the forecats come from the forecast probabiliti es
zero and ore. In ather words, the ensemble frequently
provides very confident predictions of rain or no rain.
However, the large number of forecasts of probability
zero or one oould also indicate aladk of ensemble
spread. For amajority of the forecasts the ensemble
members are in compl ete agreement.

Curves dong the 45° line indicate perfed
reli ability (forecast probability equals the observed
relative frequency), whereas curves falli ng along the



diagonal lying between the perfect reliability line and
the dimatologicd frequency (the horizontal line)
indicae zeo skill relative to aforecast based solely on
climatology. Thusthe ensembles exhibit marginal
skill for the forecasts probabilities 0, 12.5, 25, and
100% and noskill for al other probabiliti es.
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Fig. 1. Attributes diagram for 0.01” predpitation
threshold and 8-member ensembles (top) and
distribution of the relaitve use of forecast
probabiliti es (bottom).

Finally, areliability curve located beneah the
45° lineindicates an overforecast (wet bias) while a
curve éovethe 45° lineindicates an underforecast
(dry bias). The ensembles overforecasts for the lowest
forecast probabiliti es and underforecast the moderate
and high probabiliti es. The wet bias of the BT
membersis evidenced orce gjain as the six ensembles
with al threeBT members overforecast at the 37.5%
probabilit y whil e the other ensembles are nealy
perfealy reliable & that probability.

Similar behavior is e for ead of these forecast
quality aspeds for ensembles comprised of fewer
ensemble members and, to alesser degree at higher
predpitation thresholds. Anill ustration o this
similarity is provided the behavior of the Brier score
(BS) and Brier Skill score (BSS) (Fig. 2). TheBSand
BSSare based entirely oninformation cerived from
the atributes diagram, namely the reli ability,
resolution, and urcetainty (Wilks 1995). Thetop
panel showsthe BS and BSSfor 0.01" predpitation
forecast for different ensembles comprised of eight
down to four members. The BSisnealy completely
insensiti ve to the ensemble size or the different

combinations of members for each ensemble size
Somewhat greaer sensitivity to both the inter- and
intragroup dfferencesis sen for the BSS with skill
deaeasing with deaeased ensemble sizebut the
sensitivity is dill relatively slight. The BS and BSS
both drop more significantly as the predpitation
threshold isincreased to 1.00” (Fig. 2, bottom), but the
description given above for the behavior of the
different ensemble groups at the lower threshold
applies equally for forecasts of higher-end events.

Note that the ensembles exhibit negative skill for these
forecasts of more significant rainfall amourts,

meaning that aforecast based onclimatology is more
skillful than the ensemble.
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Fig. 2. Brier Score (BS, closed box) and Brier Skill
Score (BSS open box) for 0.01" (top) and 100"
(battom) thresholds. The number along the abscissa
indicates the number of ensemble members in that
group.

3.2 Relative Operating Characteristics

Ancther asped of forecast quality is
discrimination, which examines the aility of forecasts
to distinguish between events and nonevents. For
example, strong discrimination would result if events
typicdly are preceded by high forecast probabilities
and nonevents are typicdly preceded by low forecast
probabili ties (Murphy 1993). A measure of forecast
discrimination that has beacome increasingly popuar in
recent yeasistherelative operating charaderistic
(ROC; Mason 1982). For eat possble forecast
probability threshald, the probabilistic forecast can be
turned into adeterministic forecast by treaing eat
probability greaer than the threshold asa ‘yes
forecasts and ead probability below the threshold asa
‘no’ forecat. Inthisway, ahit rate (HR) andfase
alarm rate (FAR) can be cdculated for eah
probability threshold. Plotting the aray of HRs versus
the aray of FARs givesaROC curve. The aea
beneéah this curve is a measure of the forecasts
discrimination. A ROC area @ual to urity denotes
perfed discriminatory abili ty while an areaof 0.5



denotes no dscriminatory ability. There ae two
methods for cdculating the ROC area The most
commonly used methodis the trapezoidal rule, which
is ensitive to the number of points along the airve
(i.e., the number of predpitation threshalds, or in the
present case the number of ensemble members). The
second methodinvolvesfitting aline to the ROC
curve transformed into namal deviate space(Mason
1982), resulting in asmoothed curve that is not
sengiti ve to the number of ensemble members. The
former method can be thought of as a measure of the
adual performance of the forecast system whil e the
latter method can be thought of as a measure of the
potential performance of the forecast system (e.g., of
an infinite-member ensemble where eah member
possess $milar ability to the present members)
(Bamber 1975).
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Fig. 3. Fitted ROC area for the 8-member ensembles
for the four predpitation thresholds.

Figure 3 gives the smoothed ROC arees for the 8-
member ensembles for four predpitation thresholds
(0.017, 0.107, 0.50", and 1.00"). Slightly more
variability is sen in the performance of the diff erent
ensemble @nfigurations, but most of that variability is
naot statisticdly significant to the 95% level, as shown
by the aror bars. (The longer error bars for the higher
threshalds refled the substantially smaller sample size
for events of that magnitude.) Similar to the behavior
of the BSS the ROC areas do exhibit moderately
greder variability between the different predpitation
thresholds than for the diff erent configurations within
ead threshold. The discrete ROC aress as determined
by the trapezoida rule (not shown) are somewhat
lower in magnitude overall and display adeaease &
the ensemble sizedeaeases, as expeded. However,
the different ensemble cnfigurations within eah size
group kehave in the same manner as for the smoothed
curves.

The pe&k in aress at 0.5” may at first appea
courter-intuitive, asit is generally expeded that
rainfall forecasts become more difficult asthe
acaimulationincreases. Namely, heavy rain events
are very difficult to forecast. However, 0.50" refleds
more of amoderate rain event such that a strong signal
may be present (e.g., a strong forcing mechanism) but
the event isnot so rare & to exceal the aility of the
model to ceptureit.

3.3 Value

As dated in the introduction, forecast goodress
involves value s well as quality. It could be agued

that value is amore important indicator of goodness
than quality asit takes into acaount the users of the
forecasts, aswell. Forecast value can be cdculated
diredly from HRs and FARs used in the ROC curves.
SeeRichardson (2000) for a mmprehensive discusson
on cdculating the value of ensemble forecat systems.
Aswith the BSS forecast value is arelative measure
such that avalue of zero means that the forecasts
provide noimprovement over climatology and avalue
of unity denates that the forecasts supply maximum
benefit to the user.

Figure 4 presents value arves for the different
ensemble sizes as function of the wst-lossratio (C/L).
Every preventative adion taken against an event
incursa wst. The wst-lossratio expresses this cost as
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Fig. 4. Value arvesfor the 0.01" (top) and 100"
(battom) thresholds as a function d cost-loss mtio for
the different ensemble sizes.

afraction d the potential lossprotecaed by that acion
(Thompson 1950). Once aain the variation between
different ensemble sizesis quite small, with the only
discernable differencein the value aurves occurring in
the left wing of the 0.01” curves and in the maximum
value of the 1.00” curves. However, most red world
users have low C/L (H. Brooks, personal
communicaion) and so these differences can have



significant impad. For example, auser with a
C/L=0.17 would get no value out of the 4-member
ensemble, but would redize al5% improvement with
the 8-member ensemble. Also, note that despite the
negative skill possessed by the ensembles at the higher
predpitation threshold (Fig. 2), the ensembles do dfer
positive value to a substantial segment of users.

4. SUMMARY

A preliminary evaluation d a mixed-physics
ensemble has been presented following the framework
of Murphy (1993. The ensemble performs rather
poorly for several aspeds of forecast quality such as
reliability, acaracy and skill. However, the ensemble
is drong in the aeas of sharpnessand dscrimination.
Apparently these strengths balance the previously
mentioned deficiencies such that the ensemble does
provide substantial value to awide range of potential
users of the forecats. This paints out the inadequecy
of using only afew select measures of forecast
goodress

Further research into the relationship between
value and the various aspeds of forecast quality is
warranted. Examination d the quality and value of
the individual forecast members could aid in this
endeavor. Such analysis aso could help in explaining
the surprisingly small variability in the quality and
value measures as afunction d ensemble
configuration a asafunction of ensemble size
Seledive groupings of ensemble members would
allow for comparisons between the different
representations of the PBL and convedive processes
and relp determine the relative importanceof the
PBLs versus the CPs.
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