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1. INTRODUCTION

Numerical forecasts at convective scales re-
quire an accurate estimate of the atmospheric state
for initialization. Accurate state estimates at con-
vective scales in turn require the inference of un-
observed variables given observations of radial ve-
locity and reflectivity. This problem has been ad-
dressed using a number of retrieval techniques
(e.g., Shapiro et al 1995 and references) and, more
recently, with four-dimensional variational assimila-
tion schemes (4DVar; Sun and Crook 1997).

The ensemble Kalman filter (EnKF) is an
alternative approach. Although it remains largely
unproven for atmospheric flows, the EnKF has a
number of appealing properties: it does not require
adjoints of either the forecast model or observation
operators, it integrates data assimilation and
ensemble forecasting and thus produces estimates
of forecast uncertainty at no extra cost, it is highly
parallel, and it is largely independent of the forecast
model. The EnKF and its variants have also
shown substantial promise in simple test problems
(Houtekamer and Mitchell 1998; Hamill and Snyder
2000; Anderson 2001). This preprint presents
preliminary results from our evaluation of the EnKF
at convective scales.

2. BACKGROUND

In a general sense, both the EnKF and
4DVar utilize the time history of the flow to
gain information on unobserved variables. While
4DVar accomplishes this by fitting a solution
of the forecast model to the observations over
an interval of time, the EnKF summarizes the
effects of previous observations and of past growth
of forecast errors in terms of Pf, the forecast-
error covariance matrix. Although their role
may seem obscure, these covariances provide
direct information on unobserved variables; if
we know, say, the correlation in our background
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(or first guess) forecast between errors in the
components of the velocity, then an observation of
one component can be used to estimate the others.

Of course, attempts to estimate and evolve
each of the ��� ( ��� + 1)

�
2 distinct entries of Pf

(where ��� is the number of degrees of freedom
of the forecast model) are doomed to failure, as
present computers do not possess even sufficient
storage. The EnKF overcomes this difficulty by
representing Pf and other required covariances in
terms of a small ensemble (a few tens or hundreds
of members) of forecasts.

More specifically, suppose we have both an
ensemble of forecasts � xf���
	 = 1 ���
����� ����� valid at
some time � , where � represents the state vector of
the forecast model and the superscript � denotes
a forecast quantity, and a set of observations
y = Hxt + � valid at the same time, where xt is
the true state and ����� (0 � R). Let Xf be the
matrix whose columns are the ensemble deviations
(that is, the difference of each member from the
ensemble mean, xf) multiplied by ( � ��� 1) � 1 � 2. The
EnKF then uses the Kalman filter update for the
ensemble mean,

xa = xf + K(y � Hxf) � (1)

but replaces the Kalman gain matrix,

K = PfHT(HPfHT + R) � 1 � (2)

by

K = Xf(HXf)T � (HXf)(HXf)T + R � � 1 � (3)

When the observations and the the true state are
related nonlinearly by y =  (xt) + � , HXf is replaced
by the matrix whose columns are the difference
between  (xf� ) and the ensemble mean.

In addition to updating the ensemble mean,
it is also necessary to update each ensemble
member given the observations, so that the sample
covariance based on the ensemble approximates
the analysis error covariance. Here we use
the simplest method in which each member is
updated as in (1) and (3) using the observations y
contaminated by a realization of the observational
error � (Houtekamer and Mitchell 1998).

The accuracy of the update (1) can be
increased, and its computational cost reduced, by



explicitly accounting for the fact that correlations
between elements of the state variable decrease
with distance, so that observations at a sufficient
distance have little influence on the analysis at any
specific model grid point. For the results shown
here, we enforce this property by only considering
observations within a radius of a few kilometers
of a given analysis point; more sophisticated
approaches are possible (Houtekamer and Mitchell
2001).

3. RESULTS

Our experiments use the anelastic model of
Sun and Crook (1997). This model is used
both to produce a reference simulation of a
supercell (that is, xt) and to assimilate simulated
observations taken from the reference solution.
Thus, these initial experiments assume a perfect
forecast model. The reference simulation of a
supercell is the same as that used in Sun and Crook
(2001, in this preprint volume); further details may
be found there.

3.1 Ensemble evolution

Since the size of the state vector is large
compared to the likely number of ensemble
members ( � �"! ��� ), the skeptical reader will
remark that the sampling error in (3) could be
prohibitively large. This is certainly true if the errors
in different state variables are uncorrelated, but
it need not be true in the opposite case that the
forecast errors are highly correlated. In nonlinear
dynamical systems (such as the cloud model
considered here), small perturbations typically
grow in only a few directions in phase space,
while decaying, often rapidly, in most others; thus,
errors that are initially uncorrelated will develop
correlations during a forecast. The feasibility of the
EnKF (with a limited ensemble) depends on this
behavior and its time scale.

To evaluate the time scale over which the
dynamics alters small errors, we have perturbed the
reference solution at � = 40 min with 50 realizations
of Gaussian noise in velocity and temperature. This
noise is independent for each grid point and each
variable, with 1 ms � 1 and 1 K standard deviations
for winds and temperature, respectively. In the
following, we will denote error variables by primes.

Figure 1 shows � - # cross sections after 10 min
of the variance for $&% , the correlation of '(%
with $ % ( � 0

� # 0) [where ( � 0
� # 0) is the location of

max(Var( $ % ))], and the correlation of liquid-water
potential temperature ) %* with $ % ( � 0

� # 0); all of these
are calculated as sample quantities, that is, by
averaging over the 50 realizations of the error.
Note that, while the initial fields of variance for
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Figure 1. Cross sections through the center of the supercell
of (left) the sample variance for +�, (upper, contour interval
3 m2s - 2); the covariance of . , with + , ( / 0 021 0), where ( / 0 031 0)
is the location of max(Var( + , )) (middle, contour interval
1 4 5 m - 2s - 2; and the covariance of liquid-water potential
temperature 56,7 with +�, ( / 0 021 0) (lower, contour interval 1 mKs - 1).
Positive contours are shown as thick lines, negative as thin.
Also shown shaded in the upper panel is + from the reference
simulation; the contour interval 2 4 5 ms - 1, with lowest contour
value (and lightest color) corresponding to 8 5 ms - 1.

the errors are uniform (up to variations produced
by sampling error), the variance of $ % after 10 min
of forecast exhibits substantial spatial variation,
with maxima associated with the updraft of the
supercell. Similarly, there are also significant
covariances among variables after 10 min even
though those covariances are zero initially (again,
to within sampling error). Thus, the dynamical
evolution of the error fields introduces structure into
the error statistics on a time scale of 10 minutes,
which is comparable to that for the evolution of the
reference simulation.

3.2 Assimilation of simulated observations

We have performed initial tests of the EnKF
using a 50-member ensemble and simulated
observations of each of ' , $ , 9 , and ) * at one
of every 8 gridpoints. Observational errors are
independent for each variable and at each location
with standard deviations of 1 ms � 1 for wind and
1 K for ) * , and are available every 5 minutes. The
assimilation begins at � = 40 min of the reference
simulation and uses a prior estimate at that time that
consists of the reference solution perturbed with a
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Figure 2. The r.m.s. wind error of the ensemble mean in the
background forecast (open circles) and the analysis (plus signs)
from the EnKF.

realization of the observational error and ensemble
members that in turn differ from that mean by
independent realizations of the observational error.

The EnKF employs a simple, serial scheme to
compute the update (3); the scheme processes
observations one by one, updating each member
after each observation and requiring only the
inversion of a scalar in (3). More computationally
efficient implementations are possible.

The r.m.s. error of the ensemble mean
decreases steadily over 10 cycles of the EnKF; the

wind error for both the analysis and the background
forecast are shown in Fig. 2. This initial test
indicates that the filter is at least stable and well
behaved for an ensemble of 50 members. Results
of further (and more realistic) tests, such as using
observations of radial wind alone, will be presented
at the conference.
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