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1. INTRODUCTION

Convective systems can develop in a thermo-
dynamically unstable atmosphere. Such systems may
quickly reach high altitudes and can cause severe
storms. Meteorologists are thus especially interested to
identify such storm potentials when the respective
system is still in a preconvective state. A number of
instability indices have been defined to describe such
situations. Traditionally, these indices are taken from
temperature and humidity soundings by radiosondes. As
radiosondes are only of very limited temporal and
spatial resolution there is a demand for satellite-derived
indices. The Meteorological Product Extraction Facility
(MPEF) for the new European Meteosat Second
Generation (MSG) satellite envisages the operational
derivation of a number of instability indices from the
brightness temperatures measured by certain SEVIRI
channels (Spinning Enhanced Visible and Infrared
Imager, the radiometer onboard MSG). The traditional
physical approach to this kind of retrieval problem is to
infer the atmospheric profile via a constrained inversion
and compute the indices then directly from the obtained
profile. As this algorithm would impose a too high
computer load on the MPEF system, the operational
MPEF will use a statistical approach: The measured
brightness temperatures together with further predictors
are used to derive each instability index, where the
statistical relations between these parameters are
gained from a neural network and appropriate training
data. Both methods are currently installed in the
Eumetsat MPEF prototype environment and are tested
on GOES sounder data. This paper shortly describes
the two methods and shows a detailed comparison
between the two methods and to independent
radiosonde data. It should be noted that both methods
only allow the derivation of instability indices over
cloudfree areas.

2. DEFINITION OF INSTABILITY INDICES

Various studies have been performed to relate certain
instability measures taken from radio soundings to the
occurrence of severe weather. It became soon clear that
there is no unique index for all synoptic situations and
for all locations. This paper focuses on 4 different
parameters, three classical instability indices:
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K-Index:
(Tobs(850)–Tobs(500)) + TDobs(850) – (Tobs(700)–TDobs(700))

Lifted Index:
Tobs  - Tlifted from surface    at 500 hPa

Maximum buoyancy:
Θe

obs(max betw. surface and 850)  -  Θe
obs(min betw. 700 and 300)

(T is temperature, TD is dewpoint temperature, and Θe

is equivalent potential temperature, numbers 850, 700,
300 indicate respective hPa level in the atmosphere)

and the precipitable water content as additionally
derived parameter.

3. DESCRIPTION OF ALGORITHMS

3.1 The Physical Retrieval

An iterative solution to the inversion equation (e.g.
Ma et al. (1999)) tries to infer the temperature and
humidity profile from the measured brightness
temperatures, the back-ground atmospheric profile
(usually referred to as first guess) and the associated
error/noise matrices. In each iteration step, the inversion
needs knowledge about the change of brightness
temperature with the change of the atmosphere in each
level, which is described by the Jacobians of a radiation
model. It is the computation of these Jacobians together
with the inversion of large matrices which make this
method very CPU intensive. This method was chosen
for the current operational retrieval of lifted index and
precipitable water a for the GOES sounder at CIMSS
(Menzel et al., 1998), and the Eumetsat prototype only
differs from the CIMSS approach by using RTTOV as
the radiation model (Saunders et al., 1999). RTTOV has
the advantage of a much faster computation of the
Jacobians. In application to the GOES sounder, the
algorithm uses the sounder channels 5, 7, 8, 10, 11, and
12, which are at about 13.4 µm, 12.0 µm, 10.8 µm, 7.3
µm, 6.5 µm, and 6.2 µm wavelength, resp.. In a possible
future application to SEVIRI, the method will also use 6
channels, and as SEVIRI will not have a 6.5 µm
channel, the 8.7 µm channel will be used instead. This
channel selection ensures that sufficient information
concerning the atmospheric state is passed to the
retrieval algorithm, e.g. surface skin temperature and
low level moisture via the two window channels, higher
level humidity via the water vapour channels, and the
higher level temperature information via the 13.4 µm
channel.
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Over clouds, the algorithm cannot find a solution,
i.e. the iteration scheme does not converge in these
cases. Over clear skies, convergence is usually
achieved after one or two iterations, and each instability
index can then easily be derived from the atmospheric
profile.

Tests show that the physical retrieval substantially
improves the first guess data concerning the resulting
instability indices, where the improvements are clearly
related to the better detection of the unstable cases.

Closer inspection of the retrieved actual profiles
demonstrates that the retrieval scheme mostly changes
the surface skin temperature and the low level humidity
profile, while it leaves the temperature profile very near
to the first guess values.

For the MSG MPEF prototyping, the results of the
physical method are used as a kind of reference to
assess the results of the statistical approach.

3.2 The Statistical Method

This method is based on a neural network
approach: The neural net is used to identify linear and
non-linear relationships between a number of input
values – the predictors – and one output value – the
respective instability index. In general, a neural network
is a computer model of individual elements commonly
referred to as neurons. The input parameters to the
model make up the input neurons, the output value is
then the output neuron. There can be intermediate
layers which are called hidden layers of any number of
neurons. The neurons of the individual layers are
connected by links, where each link is given a certain
weight. The inputs are processed by a weighted
summation and the transfer function passes the result to
the neurons of the next layer, until the output is
produced. During a training phase of the neural net, the
weights are optimised to fit the wanted output. A neural
network must thus be trained with input / output pairs,
i.e. with some independent data.

In our case, we use a simple three-layer
backpropagation neural network (e.g. Chauvin and
Rumelhart, 1995) with 15 input neurons and one hidden
layer with 20 neurons. The transfer function is the
hyperbolic tangent  f(x) = tanh(x).

A backpropagation network is trained by learning
with clearly defined pairs of inputs and outputs. With
these ‘wanted’ outputs, the neural net successively
adjusts its weights in every learning cycle to minimise
the error between the ‘wanted’ output and the output
produced with the weights and the transfer function from
the given inputs. This training cycle is repeated for a
large number of input / output patterns until a minimum
error is achieved. The criterion of a minimum error is
also used to determine the characteristics of the input
values and the number of the hidden neurons. Obvious
input values are of course the six brightness
temperatures in the six channels (see section 3.1) and
the satellite viewing angle. Eight further parameters,
which give some seasonal and diurnal time information
and knowledge about the geographical location, slightly
improved the performance of the net.

The real problem concerned with the neural net is
to have a good training dataset: This dataset must
contain a wide range of possible observations of the
predictors and the output value. Otherwise the net will
perform badly if it is faced with real data which were not
properly reflected in the training dataset. This problem is
quite evident if radiosonde data are used for training:
Although the input values can be obtained from the
sounding rather easily – the brightness temperatures
can be calculated with a forward model – and the
instability index is directly inferred from the sounding,
the radiosondes still give a very poor training dataset.
Due to the only twice daily (00 and 12 UTC) soundings,
the diurnal cycle is not resolved, and also spatial
coverage is very poor. Locations are only a fixed set of
certain values, and the ocean areas are practically not
covered at all. It was thus decided to use the results of
the physical retrieval (taken from historical data) as
training data for the neural net. This provides data for
every possible location within the satellite’s field of view
with good diurnal coverage. Initial results with training
based on several months of GOES data showed very
good agreement between the two methods.

For this training phase, data were collected of
satellite measured brightness temperatures, of the pixel
locations and scan times and of the respective instability
index as provided by the physical method. This large
dataset (about 70,000 entries of heavily sampled GOES
sounder data over several months) was randomly split
into three categories: One third of the data was used for
the neural network training, one third was used as the
so-called generalisation data within the network training,
and the third section was used as an independent
dataset to test the network’s performance for data
unknown to the net during its learning phase. Figure 1
shows an example of this initial network test for the
precipitable water content. For the other indices, there is
slightly more scatter with correlation coefficients
between 0.85 and 0.90.

Figure 1: Scatter plot of neural network derived
precipitable water compared to independent
reference data from the physical method (correlation
coefficient 0.97)
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4. RESULTS

The two methods were applied to several GOES-8
sounder images during the months of May and June
2001. In general, good agreement was achieved
between the statistical results and the results of the
physical method, especially regarding the temporal
evolution of unstable regions. 25 hourly images
collected between 0800 UTC on 24 May 2001 and 0800
UTC 25 May 2001 comprise a sample case. During this
day, a large region of highly unstable air developed over
southern Texas along the coast, and an extended
convective system developed in the same region in the
morning hours of the 25th. Colour plots of the spatial
distribution of various instability indices derived by the
two methods and corresponding time loops are shown
in http://www.eumetsat.de/GII.

To demonstrate the rather good performance of the
statistical method with respect to the physical retrieval,
Figure 2 shows the lifted index difference between the
two methods as a mean over the entire GOES-8 field of
view and as a mean over the region of instability.

Figure 2: Difference of the lifted index between the
physical and the statistical approach for the entire
GOES-8 sounder fov (top) and over the region of
instability over Texas and the adjacent Gulf (bottom)

Potentially unstable air is described by a negative
lifted index. The positive lifted index difference shown in
the bottom section of Figure 2 thus means that the
statistical method indicates a slightly higher degree of
instability than the physical method. This is a general
behaviour of the statistical approach that is found in
many examples. As the instability measure, however, is
meant to be a warning against severe weather, this
slight exaggeration is probably a good feature.

Comparisons with the 00 UTC radiosondes on the
25th show good overall agreement to the results of both
methods. These comparisons can also be seen in
http://www.eumetsat.de/GII.

In the future application to MSG, the intention is to
disseminate the instability results as area averages over
n*n image pixels, where n will be typically of the order of
10. There are several possibilities of how to average:
(a) a simple arithmetic mean over the pixels
(b) provide the value of the most unstable pixel
(c) average only over the unstable pixels, take the

simple average over all pixels if there are no
unstable ones

(d) average over the unstable pixels if their number
exceeds a certain threshold, else average over all
pixels
For the precipitable water content, clearly option (a)

would be applicable, while for the actual instability
indices option (d) would be more preferrable. Again,
http://www.eumetsat.de/GII shows examples of the
different averaging methods.

5. CONCLUSIONS

It can be shown that a statistical approach to the
general retrieval problem of instability indices is possible
and gives good results if the regression coefficients are
obtained from a representative dataset. In the
application within the MSG/MPEF, this method will be
used as it is computationally fast and thus easily
applicable on a pixel basis to each of the MSG images,
which will be recorded at 15-minute intervals. The
operational results of the MPEF scenes analysis will
provide the cloud information so that clouds can be
screened from the processing.

As a good training dataset can probably only be
collected from selected runs of the physical method on
actual MSG image data, the quality of the MPEF
instability product is expected to increase with time as
more training data becomes available which will lead to
a successive improvement of the regression data.
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