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1. INTRODUCTION

The ensemble Kalman filter (EnKF), introduced by
Evensen (1994), is a Monte-Carlo approximation to the
traditional extended Kalman filter (EKF, Cohn 1997).
Rather than propagating error covariances using the
tangent linear and adjoint of the forecast operator, as in
the EKF, the EnKF uses ensemble of forecasts to estimate
error covariances, which is much less computationally
intensive. By providing flow- and location-dependent
estimates of first-guess forecast error, the EnKF can
potentially provide analyses and forecasts that are much
more accurate than current operational data assimilation
schemes which assume that the background error does
not vary in time.

It was recognized early in the development of the
EnKF for atmospheric data assimilation that in order to
maintain sufficient spread in the ensemble and to prevent
filter divergence, the observations should be treated as
random variables. Therefore, Houtekamer and Mitchell
(1998) proposed using perturbed sets of observations to
update each ensemble member. The perturbations were
generated to be consistent with the error statistics of the
observations, which are assumed to be known in any
atmospheric data assimilation procedure. Burgers et al.
(1998) provided a theoretical justification for perturbing
observations and showed that if the observations are
not treated as random variables, the ensemble analysis
covariances will be systematically underestimated.

In this study we show that there is a source of
error arising from using perturbed observations with
small sample size, namely, that noise added to generate
perturbed observations can be spuriously correlated
with the background errors. As discussed in our
companion manuscript (Whitaker and Hamill 2001,
herafter WH01), the consequences of this error source
can be severe when observations are processed serially,
leading to systematic underestimation of the analysis
error variance. To remove this source of error, we
re-examine the formulation of the EnKF and present
a modification to currently used algorithms that obviates
the need to add random noise to the observations. We
note that others have proposed similar but more complex
ensemble assimilation algorithms that do not involve
perturbing the observations (Lermusiaux and Robinson
1999, Anderson 2001).
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Given the need for brevity, much of the detail and
documentation of the testing in more complex models
is omitted here. Please see WH01 for this additional
material.

2. BACKGROUND

a. Ensemble Kalman �lter equations

Following the notation of Ide et al. (1997), let
xb be a background model forecast, yo be a set of
observations, H be an operator that converts the model
state to the observation space, Pb be the background
error covariance matrix, and R be the observational
error covariance matrix. The minimum error variance
estimate of the analyzed state xa is then given by the
traditional Kalman filter update equation (Lorenc 1986),

xa = xb + K(yo �Hxb); (1)

where
K = PbHT(HPbHT + R)�1: (2)

In the EnKF, Pb is approximated using the sample
covariance from an ensemble of model forecasts.
Expressing the variables as an ensemble mean (denoted
by an overbar) and a deviation from the mean (denoted
by a prime), the update equations may be written as

xa = xb + K(yo �Hxb); (3)

x0a = x0b + eK(y0o �Hx0b); (4)

where Pb = x0bx0bT, K is the traditional Kalman gain
given by Eq. (2), and eK is the gain used to update
deviations from the ensemble mean. In the EnKF
framework, there is no need to compute and store the
full matrix Pb. Instead, PbHT and HPbHT are estimated
directly using the ensemble (Evensen 1994, Houtekamer
and Mitchell 1998).

In the traditional Kalman filter, the analysis error
covariance Pa is reduced from the background amount
Pb by the assimilation of observations:

Pa = (I�KH)Pb(I�KH)T +KRKT = (I�KH)Pb: (5)

However, in the EnKF, if all members are updated with
the same observations (y0o = 0) using the same gain
(K = eK), the covariance of the analyzed ensemble can
be shown to be

Pa = (I�KH)Pb(I�KH)T (6)



Burgers et al. 1998). The missing term KRKT causes
Pa to be systematically underestimated. If random noise
is added to the observations so that y0o 6= 0, the analyzed
ensemble variance is

Pa = (I�KH)Pb(I�KH)T+

K(y0oy0oT �Hx0by0oT � y0ox0bTHT)KT+

x0by0oTKT + Ky0ox0bT

: (7)

If the observation noise is defined such that hy0oy0oTi = R
(where the brackets denote the expected value), then
the expected value of Pa is equal to that traditional
Kalman filter result (Eq. 5), since the expected value of

the background-observation error covariance hx0by0oTi
is zero (Burgers et al. 1998). However, for a
finite ensemble, observational error and the background-
observation error covariances will differ from their
expected values due to sampling error. Therefore,
errors in the EnKF with perturbed observations may be
associated with sample size limitations in the estimation
of the background error covariance and the observational
error covariance.

b. Single-step data assimilation example

We now demonstrate the problem of spurious
correlations between the observation perturbations and
the background errors by performing a single data
assimilation step where error statistics are known
exactly. Our toy model is a one-dimensional periodic
domain 40 units wide, discretized into 40 grid points.
Background-error variances are 1.0 at each grid point,
and the functional dependence of the background-error
covariance is as given by Eq. 4.10 in Gaspari and
Cohn (1999). This is a function which is approximately
Gaussian in shape but which decays monotonically to
zero at a separation distance of 10 units. Observations
are available at every grid point, and are obtained by
adding Gaussian white noise with unit variance to the
true state (which is taken to be zero without loss of
generality).

Ensembles of first-guess fields are created by
generating random fields consistent with the assumed
background-error covariances. The sample analysis
error covariance obtained from a single step of the
EnKF with perturbed observations is compared with that
computed from Eq. (5) using the sample Pb. Fig. 1
shows the the absolute error in the estimated analysis
error covariance as a function of distance from the
analysis point, averaged over all analysis points, for a
case with 10 ensemble members and observations at
every grid point. The noise added to the observations
in the EnKF results in significant higher errors in
the estimated analysis error covariance than would be
expected from sampling errors in the background-error
covariance alone. Using this one-dimensional example,
WH01 show that when observations are processed
serially in the EnKF, perturbing the observations has
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Figure 1. Absolute error in the analysis error covariance averaged over
all analysis points, as a function of distance from the analysis point,
for the EnKF (dotted), and computed with eq. (5) using the sample
background-error covariance (light solid line). The thick solid line
is the exact analysis error covariance computed from eq. (5) using
the exact background-error covariance. A 10-member ensemble with
observations at every grid point is used.

an even larger impact. This suggests that methods
which do not require perturbed observations,and enforce
Eq. (5) directly, should attain higher accuracy for
the same ensemble size by removing the error source
associated with spurious background-observation error
covariances.

3. AN ENSEMBLE SQUARE ROOT
FILTER.

We propose that instead of adding noise to the
observations to obtain the correct Pa, eK be defined such
that Eq. (5) is satisfied. Substituting eK into Eq. (6),
and requiring that the resulting expression be equal to
the ”correct” Pa (the right-hand side of Eq. (5)), yields
an equation for eK
eKHPbHTeKT � PbHTeKT � eKHPb + KHPb = 0: (8)

Letting A = I � eKH, the above may be written as

APbAT = Pb �KHPb; (9)

which has a solution

A
p

Pb =
p

Pb �KHPb: (10)

Since the calculation of A involves the square root of the
background-error covariance matrix, this is essentially
a Monte-Carlo implementation of a square-root filter



(Maybeck 1979). For this reason, we call this algorithm
the ensemble square root filter, or EnSRF.

When sequentially processing independent observa-
tions, K, eK; HPb and PbHT are all vectors with the same
length as the model state vector, and HPbHT is a scalar.
Thus, as first noted by Potter (1964), when observations
are processed one at a time Eq. (8) becomes a scalar
quadratic which can solved for each each element of the
vector eK independently, yielding

eK =

 
1 +

r
R

HPbHT + R

!
�1

K: (11)

Here, HPbHT and R are scalars representing the
background and observational error variance at the
observation location. The quantity multiplying K in
Eq. (11) is a scalar between 0 and 1. This means that, in
order to obtain the desired analysis error covariance, one
must use a modified Kalman gain to update deviations
from the ensemble mean that is reduced in magnitude
relative to the traditional Kalman gain. Thus, deviations
from the mean are reduced less in the analysis usingeK than they would be using K. In the EnKF, the
excess variance reduction caused by using K to update
deviations from the mean is compensated for by the
introduction of noise to the observations. In the EnSRF,
the mean and departures from the mean are updated
independently according to Eqs. (2), (3), (4), and (11),
with y0o = 0. If observations are processed one at a
time, the EnSRF requires no more computation than the
traditional EnKF with perturbed observations.

4. RESULTS WITH THE 40-VARIABLE
LORENZ MODEL.

The model of Lorenz and Emanuel (1998) is
governed by the equation

dXi

dt
= (Xi+1 �Xi�2)Xi�1 �Xi + F; (12)

where i = 1; :::; N with cyclic boundary conditions.
Here we use N = 40, F = 8 and a fourth-order
Runge-Kutta time integration scheme with a time step
of 0.05 units. For this parameter setting, the leading
Lyapunov exponent implies an error doubling time of
about 8 time steps, and the fractal dimension of the
attractor is about 27 (Lorenz and Emanuel 1998). For
our assimilation experiments, each state variable is
observed directly, and observations have uncorrelated
errors with unit variance. A 10-member ensemble is
used, an observations are assimilated every time step
for 50,000 time steps (after a spin-up period of 1000
time steps). We use the following statistics to measure
the relative performance of the EnKF and EnSRF. The
time-averaged RMS error of the ensemble mean is
denoted as (E1), and E2 denotes the time-averaged

RMS error of each ensemble member. The RMS ratio
R = E1=E2 is a measure of how similar the truth is to a
randomly selected member of the ensemble (Anderson
2001). If the truth is statistically indistinguishable
from any ensemble member then the expected value
of hRi =

p
(M + 1)=2M, or approximately 0.74 for

a 10-member ensemble (Murphy 1988). If the actual
R < hRi, there is too much spread in the ensemble, and
if R > hRi, there is not enough spread.

Sampling error in the EnKF can cause filter
divergence, so some extra processing of the ensemble
covariances may be necesary if the number of ensemble
members is less than the number of degrees of freedom
present in the system being analyzed. The two
techniques used here are distance-dependent covariance
filtering (Houtekamer and Mitchell 2001, Hamill et al.
2001) and covariance inflation (Anderson and Anderson
1999). Distance-dependent covariance filtering counters
the tendency for ensemble variance to be excessively
reduced by spurious long-range correlations between
analysis and observations points by applying a filter that
forces the ensemble covariances to go to zero at some
distance L from the observation being assimilated. The
function we use to perform the filtering is given by Eq.
4.10 in Gaspari and Cohn (1999).

Occasionally, sampling error will cause the back-
ground error variances to be underestimated, and the
analysis system will weight the first-guess forecasts too
heavily. Due to the nonlinear relationship between K and
Pb, underestimation of the background error variances
can have a relatively more severe impact on analysis error
than overestimating the variances by the same amount.
To compensate for this, covariance inflation simply in-
flates the deviations from the ensemble mean first-guess
by a small constant factor r for each member of the en-
semble, before the computation of the background error
covariances and before any observations are assimilated.
See Hamill and Whitaker (2001) for more details.

Fig. 2 showsE1, averaged over 50,000 assimilation
cycles, for the EnKF and EnSRF, as a function of the
covariance inflation factor and the length scale of the
covariance localization filter. The shaded areas on
these plots indicate regions in parameter space where
the filter has diverged, i.e., has drifted into a regime
where it effectively ignores observations. For both the
EnKF and EnSRF, filter divergence occurs for a given
covariance filter length scale L when r is less than a
critical value. However, the EnSRF appears to be less
susceptible to filter divergence, since the critical value
of the covariance inflation factor is always less for a
given L. Overall, for almost any parameter value, the
error in the EnSRF is less than the EnKF. The minimum
error in the EnSRF is 0.16, which occurs at L = 24 for
r = 1.03. For the EnKF, the minimum error is 0.21,
which occurs at L=15 for r = 1.08. These results are
consistent with those shown for the one-dimensional
model in Fig. 1, which demonstrated that the extra
terms in Eq. (7) involving background-observation



error covariances reflect increased sampling error for
the same ensemble size when noise is added to the
observations in the EnKF. This extra sampling error
makes the EnKF more susceptible to filter divergence,
and reduces the accuracy of the filter. Effectively, the
signal/noise ratio present in the EnSRF ensemble is
higher than in the EnKF ensemble, which means that
the EnSRF is able to extract more useful information
from the observations for a given ensemble size. This
is consistent with the fact that larger values of L benefit
the EnSRF, but are detrimental to the EnKF. For greatly
separated observation and analysis grid points, there may
only be a very small ’true’ covariance, or signal. The
EnSRF is able to extract and use of this signal, which
is overwhelmed by the extra noise associated with the
perturbed observations in the EnKF.

Fig. 3 shows the RMS ratio for the same set of
experiments. For a 10-member ensemble, the expected
value for an ensemble which faithfully represents the true
underlying probability distribution is 0.74. For nearly all
parameter settings in this model, the EnSRF has a lower
RMS ratio than the EnKF, indicating that the variance
in the EnKF ensemble is smaller relative to ensemble
mean analysis error. This behavior is a consequence
of the additional noise introduced into the background-
error covariance estimate by the perturbed observations.
Because of the extra sampling error associated with
the perturbed observations, there is more temporal
variability in the background error variances in the EnKF
than in the EnSRF. The nonlinear relationship between
the K and Pb causes underestimation of Pb to haves a
relatively larger impact on Pa than overestimation of Pb.
Therefore, over many assimilation cycles, the net result
of the extra temporal variability in the EnKF background
error variance estimates is an under-weighting of the
observations, and an analysis ensemble whose variance
is smaller relative to ensemble mean error.

5. CONCLUSIONS.

We have implemented an ensemble square-root
filter, or EnSRF, based upon the algorithm of Potter
(1964), which involves processing the observations
serially. This implementation is attractive because, in
addition to being algorithmically simple, it avoids the
need to compute matrix square roots and thus is requires
no more computation than the EnKF with perturbed
observations and serial observation processing.

The benefits of ensemble data assimilation without
perturbed observations have been demonstrated by
comparing the EnKF and the EnSRF using the Lorenz
and Emanuel (1998) model, and using an idealized
primitive equation GCM in our companion paper
(WH01). The EnSRF produces an analysis ensemble
whose ensemble mean error is lower than the EnKF
for the same ensemble size. The actual reduction
in analysis error realized by implementing the EnSRF
depends on the ratio of sampling error in the estimation

Figure 2. Ensemble mean error as a function of the distance at which
the covariance filter goes to zero, and the covariance inflation factor,
for the EnKF (A) and the EnSRF (B). Results are for a 10 member
ensemble averaged over 50,000 assimilation cycles using the model of
Lorenz and Emanuel (1998), with observations of every state variable.
Observations have unit error variance. Shaded regions indicate regions
in parameter space where the filter diverges.

of the background error covariance to sampling error
in the estimation of the observational error covariance
in the EnKF. Factors that can affect this ratio are the
density of observations and the relative magnitudes of the
background and observational error variance. We note
that ampling error in the observational error covariance
was relatively more important in the low-order model
as compared to the global GCM experiments presented
in WH01, so that the difference between the EnSRF
and EnKF is larger in the low-order model. WH01
also describes how the errors associated with the noise
added to the observations is relatively more severe when
observations are processed serially in the EnKF.

The EnSRF as formulated here requires observa-
tions to be processed one at a time, which may pose
quite a challenge in an operational setting where obser-
vations can number in the millions. It will be crucial to
develop parallel algorithms (such as the one proposed by
Houtekamer and Mitchell (2001)) to allow greatly sep-
arated observations to be processed independently. The
treatment of model error, which we have not considered
in this study, will likely be a crucial element in any fu-
ture operational system. These will continue to be active



Figure 3. RMS ratio as a function of the distance at which the
covariance filter goes to zero, and the covariance inflation factor,
for the EnKF (A) and the EnSRF (B). Results are for a 10 member
ensemble averaged over 50,000 assimilation cycles using the model of
Lorenz and Emanuel (1998), with observations of every state variable.
Observations have unit error variance. Shaded regions indicate regions
in parameter space where the filter diverges.

areas of research as ensemble data assimilation methods
are implemented in more complex and realistic systems.
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