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1. INTRODUCTION

Many of the talks and posters during this year’s con-
ference will discuss how both ensemble forecasting and
atmospheric data assimilation can work synergistically
together. We detail provide a brief description of the
underlying theoretical basis for this research. The uni-
fying idea is that the chaotic nature of the atmosphere
can actually be put to use to improve data assimilation.
Ensemble forecasts provide flow-dependent estimates of
likelihood of a model-forecast state; modern data assim-
ilation theory requires just this sort of estimate in order
to determine how to effectively assimilate new obser-
vations. Thus, ensemble forecasting and data assimila-
tion can be coupled into a unified theory. It is possible
that data assimilation systems around the world 10 years
hence will be using ensemble-based methodologies. It
is time for this research to emerge from a being fringe
discipline to being the central focus for how to improve
data assimilation and numerical weather forecasts.

2. UNDERLYING THEORY

The literature of numerical weather prediction over
the last 40+ years has generally focused on how to
produce a single “best” initial condition, and from that,
make the best forecast possible. Data assimilation,
in this context, is usually expressed in some equation
where a first guess, or background, is adjusted toward
new observation to produce an “analysis.” However,
considering chaotic effects (e.g., Lorenz 1993), a more
reasonable goal is to predict the evolution of probability
density�, that is, to know the likelihood of any possible
state of the weather we are interested in. Notationally,
we will use the convention that a capitalizedX and
Y represent random vectors for the model state and
observations, respectively. Lowercasex and y will
represent actual samples of those random vectors.

Say we seek to estimate a discretized representation
of the true state of the atmosphereXt

t at some
time t, perhaps representing the state of the weather
(winds, temperature, humidity, etc.) at a finite
number of grid points. We have a prior estimate
of the probability distributionXt

t, but now we have
newly collected observationsyo, We’d like an updated,
sharpened estimate of the probability distribution. In
the terminology of Bayesian statistics, the we would
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like to find �(Xt
t = xt j Y = yo), which we shall

shorten notationally to�(XtjY = yo). That is, we seek
the “posterior” distribution of� conditional on (after
assimilating) the new datayo. Bayes’ Rule (any statistics
text) tells us how to calculate this:

�(Xt
t
jY = yo) =

�(Xt
t) �(Y = yojXt

t)R
�(�) �(Y = yoj�)d�

(1)

In Bayesian terminology,�(Xt
t) is called the “prior

distribution.” An application of Bayes’ Rule is illustrated
in Fig. 1 for a 2-dimensional system where the
observation and the background state are assumed to
measure the same quantity. The posterior is basically a
normalized multiplication of the prior distribution and
the distribution for the observations conditional on the
background�(Y = yojXt

t).
From this initial, relatively sharp probability

distribution, we would like to forecast the evolution
of probability, allowing us to estimate the likelihood
of future states. In probabilistic terms, our goal is to
estimate the probability density�(Xt

t) ast increases. If,
perchance, we have a perfect model of the evolution of
the atmosphere, i.e.,dxt

dt
= f (xt), then the evolution of

this probability density� can in principle be modeled
with the Liouville equation, a continuity equation for
probability density (Ehrendorfer 1994):

@ �(Xt
t)

@t
+r �

�
Xt
t �(Xt

t)
�

= 0 (2)

Figure 1. Example of the application of Bayes’ Rule in 2 dimensions.
Observation probability distribution denoted by dotted line (actual
observation is heavy black dot), background (prior) by the solid line,
and analysis (posterior) by dashed line. 25, 50, and 75 % of the
probability lie outside the respective contours.



If our model is imperfect, perhaps our model can
expressed stochastically in the formdxt

dt
= f (xt) +

G(xt)wt, where wt is assumed to be noise from a
Weiner process (e.g., Penland 1996). Then, if certain
assumptions are made about the stochastic forcing,
there is an analogous equation called the Fokker-Planck
equation that expresses the evolution of uncertainty (see
Gardiner 1990).

In practice, for all but the most trivial systems,
neither the Liouville nor the Fokker-Planck equations
are tractable, certainly not for million-dimensional state
vectors as in current-generationNWP models. However,
we can put a handy statistical theorem to use (e.g.,
Casella and Berger 1990) : Let’s shift the time notation
so thatt��t denotes an initial time, andt the subsequent
forecast time. Supposext��t(i); i = 1; : : : ; n are random
samples of the random variableXt��t and suppose
we have some function (e.g., a forecast operator)f
such thatxt(i) = f (xt��t(i)). Then xt(i) is a random
sample ofXt. In other words, if we randomly sample
the distribution of initial conditions�(Xt

t��t
) and plug

each into the forecast operator, then we get a random
sample of forecasts�(Xt

t) (though, buyer beware: we
get a random sample reflecting our own NWP forecast
operator, not necessarily a random sample of the “real”
forecast operator, mother nature).

If we are forced to work with random samples rather
than explicitly computing probability distributions,
we need to develop a methodology for doing data
assimilation that properly utilizes these random sample.
It turns out that Bayes’ Rule provides the context for
how to perform data assimilation, but (1) is not directly
useful in highly dimensional systems. The problem in
these high-dimensional systems is much simpler if we
can make Gaussian assumptions (these assumptions may
not be bad if errors are relatively small and still growing
linearly). To see how the “Kalman filter” equations
(e.g., Lorenc 1986) are derived, let us assume that the
prior distribution is Gaussian with meanxb and variance-
covariance matrixPb: �(Xt

t) � N (xb;Pb). That is,

�(Xt
t) / exp

h
�

1
2

�
Xt
t � xb

�T
Pb�1

�
Xt
t � xb

�i
: (3)

Similarly, let us assume that probability distribution for
the state of the observations given the background is
normally distributed according to

�(Y =yojXt
t) /

exp
h
�

1
2

�
yo �HXt

t

�T
R�1

�
yo �HXt

t

�i
:

(4)
Here, H is an operator which converts the model
state into the observation type. To find the maximum
likelihood estimator for�(Xt

t j Y = yo), we use Bayes’
Rule, noting�(Xt

t j Y = yo) / �(Xt
t) �(Y = yo j Xt

t).
Maximizing this product is equivalent to minimizing
the negative of the natural log of the product, i.e., to

minimizing the functionalJ(Xt
t)

J(Xt
t) =

1
2

h�
Xt
t � xb

�T
Pb�1

�
Xt
t � xb

�
+

�
yo �HXt

t

�T
R�1

�
yo �HXt

t

�i (5)

With much algebra, it is possible to show that the
posterior distribution has the form�(Xt

t j Y = yo) �
N (xa;Pa) wherexa is defined by

xa = xb + K(yo �Hxb) (6)

and whereK is the Kalman gain matrix,

K = PbHT(HPbHT + R)�1: (7)

The posterior variance/covariance matrix is predicted by
the equation

Pa = (I�KH)Pb: (8)

It can also be shown that if one has a faulty or simplified
estimate of the background error covarianceP̂b (perhaps
an estimate that does not vary with the weather of the
day), the expected analysis error covariance is

Pa = Pb � K̂HPb �
�

K̂HPb
�T

+ K̂
�

HPbHT + R
�

K̂
T

(9)

whereK̂ = P̂bHT(HP̂bHT + R)�1 (Hamill and Snyder
2001). Note that predicting the truePa via (9) requires
knowledge of the true error statisticsPb, which are likely
to be highly flow dependent. Thus, to date, since all
operational centers use these simplified estimatesP̂b

and don’t know the truePb, they do not attempt to
predictPa, instead focusing on estimating the most likely
state using algorithms akin to (6). Conceptually, one
could use an extended Kalman filter (e.g. Cohn 1997,
Talagrand 1997), predicting the evolution ofPb using
a linear tangent and adjoint of the forecast model, then
using (8) to predictPa. However, this approach is not
computationally feasible for large-dimensional models
unless simplifying assumptions are made (e.g., Fisher
1998).

But what might be possible if we have a random
sample of�(Xt

t) (an ensemble of forecasts) and new
observations? First, it’s possible that we can develop
a highly accurate estimate of background error covari-
anceŝPb ' Pb from the random sample.The more ac-
curate these background error covariances, the more
accurate the analysis, for we will be weighting and
spreading the in
uence of observations as e�ciently
as possible. Further, if we have a quality estimate ofPb,
then it should be possible to predict the covariancePa of
the posterior,�(Y = yojXt

t). We thus have an estimate
of not only the most likely state, but also some esti-
mate of the uncertainty in that state. A random sample



of this distribution is just what we’re after in ensemble
forecasting.

Let’s take this a step further: can we develop
a theory so that if we are given a random sample
from �(Xt

t), in performing the data assimilation we
automatically generate a random sample from the
posterior�(Y = yojXt

t
)? Much of the research in

ensemble data assimilation is based on this premise.

3. ENSEMBLE KALMAN FILTER DATA

ASSIMILATION SYSTEM

In the horse race for the first operational ensemble-
based data assimilation method, the ensemble Kalman
filter, or “EnKF” has the early lead (Evensen 1994,
Houtekamer and Mitchell 1998, 2001, Hamill and
Whitaker 2001, and references therein). Many of the
talks and posters during the conference will discuss
variants on the EnKF. We provide a quick review here.

Start with an ensemble ofn analyses at some time
t0 with sufficient spread amongst members. Then
repeatedly follow a three-step process for each data
assimilation cycle: (1) Maken forecasts to the next
analysis time. These forecasts will be used as
background fields forn parallel analyses. (2) Given the
already imperfect observations at this next analysis time
(hereafter called the “control” observations), generate
i = 1; : : : ; n independent sets ofperturbed observations
yo
i

by adding random noise to the control observations
yo. The noise is drawn from the same distributionR
as the observation errors, and the noise is constructed
to ensure that the mean of the perturbed observations is
equal to the control observation. (3) Performn objective
analyses, updating each of then background forecasts
using the associated set of perturbed observations. The
analysis equation for theith member is

xa
i = xb

i + P̂bHT
h
HP̂bHT + R

i
�1�

yo
i �Hxb

i

�
: (10)

xb
i

is them-dimensional model state vector for theith
member background forecast of ann-member ensemble,
and xa

i
is the subsequently analyzed state for theith

member.P̂b is now an approximation of the background
error covariances generated from the collection of
background forecasts. In its most simple form,P̂b is
approximated by

P̂b =
1

n� 1

nX
i=1

�
xb
i � xb

��
xb
i � xb

�T
; (11)

wherexb = 1
n

Pn

i=1 xb
i

is the ensemble mean. It can
be shown (Burgers et al. 1998) that under certain
assumptions, the ensemble mean from the EnKF is
“optimal” and the posterior covariance calculated from
the ensemble of analyses matches thePa predicted by
(9).

Additional complexity is often introduced to the
standard EnKF design to deal with the detrimental
process known as filter divergence (e.g., Houtekamer
and Mitchell 1998, van Leeuwen 1999). In this process,
the ensemble progressively ignores observational data
more and more in successive cycles, leading to a useless
ensemble. One approach is to modifiy backround
error covariances by applying a Schur product with a
correlation function, as discussed in Houtekamer and
Mitchell (2001) and Hamill et al. (2001). Another
approach which can ameliorate the tendency toward filter
divergence is to use a “double” EnKF (Houtekamer and
Mitchell 1998), whereby ensemble members are kept
in two separate batches; the covariance model from one
batch is used in the assmilation of the other. This can help
prevent the feedback cycle toward smaller and smaller
background error covariances. Hamill and Snyder
(2000) suggested a hybrid EnKF, whereby covariances
are modeled as a combination of covariances from the
ensemble and from a stationary model like 3D-Var.
Anderson and Anderson (1999) suggested increasing
background error covariances somewhat by inflating the
deviation of background members with respect to their
mean by a small amount.

Though covariances are generally modeled in
the EnKF as in (11), direct application of (11) is
computationally prohibitive. Thus, for computational
efficiency, the matrix operationŝPbHT and HP̂bHT in
(9) are computed together using data from the ensemble
of background states. Define

Hx
b

=
1
n

nX
i=1

Hxb
i ;

which represents the mean of the estimate of the
observation generated from the background forecasts.
Then

P̂bHT =
1

n� 1

nX
i=1

�
xb
i � xb

��
Hxb

i �Hx
b
�T

; (12)

and

HP̂bHT =
1

n� 1

nX
i=1

�
Hxb

i �Hx
B
��

Hxb
i �Hx

B
�T

:

(13)

4. ENSEMBLE DATA ASSIMILATION:

SIMPLE EXAMPLES

We now discuss some simple example to illustrate
how the EnKF works. We take the same data as was
used to generate Fig. 1, a 2-D system. However, in
actuality we do not know the full prior background-
error covariance as assumed to generate Fig. 1. Let us
assume that we have an ensemble, a random sample from
this distribution (Fig. 2(a), small dots), and a control



observationyo, denoted by the heavy black dot. We
know the observational error covarianceR and generate
perturbed observations (diamonds) consistent with these
error statistics. A background error covariance, or
“sample prior” is estimated from our ensemble; note
that since this is estimated from a random sample,
it is not the same distribution as the true prior (one
dashed contour illustrated for comparison in Fig. 2(a)).
Now, parallel assimilation cycles are conducted using
eq. (10) updating one background to one perturbed
observation. The resulting analyses (dots in Fig 2(b)) are
generally consistent with the true posterior distribution
(dashed lines in Fig. 2(b), reproduced from Fig. 1).
As illustrated in Fig. 2, there is a sampling error
in estimating covariances from a random sample of
background states. As long as the true distribution is
Gaussian, this estimate will improve as more members
are added. We note, also, that there is a sampling
error associated with the use of perturbed observations.
As discussed in Burgers et al. (1998), the perturbed
observations were originally added to ensure that the
expected value ofPa from the EnKF matched that
predicted by eq. (8). However, especially for small
ensemble sizes, the perturbed observations can be
spuriously correlated with the background. Fig. 3 (a)-
(b) illustrates how, by reassociating certain perturbed
observations with certain background members, very
different sets of analyses may result. Other presentations
during this conference by Anderson and Whitaker will
suggest alternative methods to the EnKF which can
overcome this particular sampling problem.

5. CONCLUSIONS

Ensemble-based data assimilation schemes are a
very promising new approach which may dramatically
improve data assimilation. By providing flow-dependent
information on the errors in the background state, the
influence of new observations can be used much more
effectively. Data assimilation and ensemble forecasting,
now considered distinctly different parts of the forecast
process, may be unified, improving the quality of each.

Research into ensembles and data assimilation is
growing, but there are still a host of issues that need
to be explored and resolved before the ensemble-based
data assimilation techniques will be ready for operational
use. Among the expected problems that will need to be
addressed are:

� How do we minimize the computational expense
of ensemble-based data assimilation schemes? Gener-
ally, the ensemble schemes are more accurate with more
members, but the schemes scale in cost with the size of
the ensemble. It may be possible to reduce costs using
dynamically constrained perturbations (e.g., Heemink
et al. 2001), and clever methods of exploiting par-
allelism may reduce the computational demands (e.g.,
Houtekamer and Mitchell 2001).

Figure 2. (a) Example of EnKF algorithm. Perturbed observations
(diamonds) created by adding noise to control observation (heavy dot).
Background states (dots) here assumed to be randomly sampled from
true prior distribution in Fig. 1. Sample prior distribution from prior
overplotted in solid, and observational error distribution with dots.
(b) Posterior (analyzed) states from EnKF (dots), with true posterior
distribution from Fig. 1 plotted over top (dashed).

� How do we deal with non-Gaussian statistics? To
what extent are the distributions really non-Gaussian?
This is an active but relatively new area of research.

� Will there be complications (such as balance is-
sues) when the technique is applied to full primitive-
equation models with complex physical parameteriza-
tions?

� How do we deal with model errors? Do we have
models cast in a stochastic framework (e.g., Buizza et al.
1999, Penland 1996) or add system noise during the data
assimilation (e.g., Mitchell and Houtekamer 2000)?



Figure 3. Two more examples of samples of the EnKF analyses
(dots) for different associations of the perturbed observations with
the background states.
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