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1. INTRODUCTION 
 
The Local Analysis and Prediction System (LAPS) 

analyzes three-dimensional moisture and other state 
variables hourly (or more frequently) over a high-
resolution relocatable domain.  LAPS analyses have 
been routinely used to initialize local-scale, high-
resolution models such as the Colorado State 
University’s Regional Atmospheric Modeling System 
(RAMS) model and the National Center for Atmospheric 
Research’s MM5 (mesoscale model, version 5) as a 
means to utilize local data in the forecast model. LAPS 
has been integrated into the Advanced Weather 
Information Processing System (AWIPS) as part of the 
National Weather Service (NWS) modernization. 
Research to expand LAPS capabilities is one avenue 
toward providing advanced technologies and new 
innovations to the operational forecaster.   
 

This paper describes progress toward advancing 
the variational technique in the LAPS moisture analysis.  
To date, the variational step has been used only with 
GOES sounder radiances.  Other moisture variables 
were analyzed separately and either merged with that 
variational result or with the background field prior to 
the variational step (Birkenheuer 2000, 1999).  This 
change will enable the use of more data in the 
variational framework.  The solution strategy allows 
different data sources to be represented by different 
terms in the minimized functional.  The functional can 
automatically adjust to match the datasets present.  
More important, this approach accommodates 
nonlinear functionals. 
 
1.1 Brief History of LAPS 

 
During the 1980s, FSL conducted forecast 

exercises to test its workstation prototypes.  
Forecasters were burdened with the impossible task of 
reviewing all the incoming data made possible through 
new technologies, while producing timely forecasts. It 
became obvious that local data needed to be 
objectively analyzed in conjunction with nationally 
disseminated data.  Conceived as a resolution to this 
challenge, LAPS was designed to analyze available 
local data in real time on affordable computer 
workstations and utilize the analyses to initialize local-
scale forecast models.  So far LAPS has been 

interfaced with RAMS and MM5, but in principle it can 
function with any weather prediction model.  Such 
models can address specific problems of a small 
forecast domain with greater detail than can be 
achieved with nationally disseminated model guidance 
(Snook et al. 1998).  A more detailed review of LAPS is 
available in McGinley et al. (1991). 

  
The LAPS system is routinely tested with new data 

sources and innovative improvements, using more 
"conventional" data, which typically are nationally 
disseminated.  Advanced data include Doppler 
reflectivity and velocity fields, satellite observations 
including GOES infrared (IR) sounder data, wind 
profiler data, automated aircraft reports, and dual-
channel ground-based radiometer data.   New data 
sources included here are GOES-derived layer 
precipitable water data (GVAP), and Global Positioning 
System (GPS) data.  

 
2. DATA SOURCES SPECIFIC TO THIS UPGRADE 
 
2.1 GOES-Derived Layer Precipitable Water Data 
 

GVAP data were obtained from the University of 
Wisconsin - Madison in real time on a daily basis 
(Menzel et al. 1998).  The new variational scheme 
scales the appropriate parts of the LAPS moisture 
column to fit each of the three layers provided by GVAP 
data.  The prior LAPS system only utilized total column 
GVAP water vapor data.  The GVAP layers (defined as 
surface to 0.9 sigma, 0.9 to 0.7 sigma, and 0.7 to 0.3 
sigma) are converted to a pressure coordinate system 
as part of the GVAP preanalysis.  Also as part of this 
step, data are distributed on an analysis grid with a 
radial influence corresponding to the field of view.  In 
this case, 30 km GVAP data have a nominal latency of 
2 h at the current time.  

 
2.2 Global Positioning System Vapor Delay Data 
 

GPS data refer to derived total column water vapor 
(zenith) from GPS signal delay (Wolfe et al., 2000).  
These data are obtained in real time with a 
characteristic latency of 20 min.  GPS data are immune 
from cloud effects, and therefore can be used where 
clouds are present.  A horizontal influence of 12 km 
was applied to the GPS data.  Similar to the GVAP data 



treatment, these data are distributed on an analysis 
grid.  

 
2.3 Cloud Data 
 

Gridded cloud data are obtained from the LAPS 
cloud analysis, which relies on satellite image data in 
addition to Doppler radar, ACARS, surface-based 
observations of sky conditions, and pilot reports.  These 
data define clear fields of view for utilizing satellite 
radiance data and help identify regions that require 
saturation due to complete cloudiness.  In partly cloudy 
regions, the scheme relates cloud fraction to RH and 
influences the variational result. The partial cloud 
enhancement starts at 0.6 cloud fraction assigning a 
60% RH at that point, and ramps linearly to saturation 
at total cloud cover.  
 
3.    LAPS MOISTURE ANALYSIS 
 

The specific humidity (SH) module is one of 17 
LAPS algorithms that span everything from data 
preparation and quality control (QC) to actual analysis.  
In addition to state variables, LAPS also produces 
highly specific analyses of special interest, such as 
aircraft icing threat and relative humidity with respect to 
both mixed and liquid phases.  The SH module is one 
of the last analyses run, prior to the new mass balance 
scheme.  It incorporates many fields that have already 
been processed such as clouds and surface moisture. 
 
3.1  Background Setup 
 

Like most analysis systems, LAPS requires a 
starting field, which it later modifies by adding 
information from other datasets.   This background, or 
first-guess field for the test discussed here, is FSL’s 
Mesoscale Analysis and Prediction System (MAPS) 
analysis.  Updated each hour, MAPS is the 
development model of the operational Rapid Update 
Cycle (RUC-2) at the National Centers for 
Environmental Prediction (NCEP).  The background 
model moisture data are interpolated to the denser 
LAPS grid and reconciled with the LAPS temperature 
analysis to avoid supersaturation.   

 
Additionally, LAPS can also use a previous short-

range forecast (i.e., MM5 1-h forecast initialized with 
LAPS) and uses this as the background for the next 
analysis in the cycle.  This four-dimensional data 
assimilation (4DDA) scheme is currently being tested 
using an hourly update cycle. 
 
3.2  Boundary Layer Moisture 
 

Since the surface analysis uses hourly 
observations, its representation of surface moisture is 
possibly the most up-to-date moisture field attainable 
using conventional data sources, and is key to tracking 
moisture changes in the boundary layer.  The boundary 
layer moisture module mixes surface humidity into the 

calculated boundary layer by adjusting the moisture in 
the low levels of the 3-D grid.   

 
3.3  GVAP and GPS Pre-analysis 
 

The GVAP and GPS fields are individually 
preanalyzed prior to the variational step.  This is done 
to specify data at all grid points and assure they have a  
spatial influence related to instrument characteristics.  
The preanalysis consists of a simple nearest gridpoint 
assignment of the observation, and a smoothed 
interpolated field between observation locations.  In 
addition to the three GVAP fields (one for each sigma 
layer) and the one GPS field, each field has a 
corresponding weighting function.  The spatial weight 
controls the horizontal influence of the data field at grid 
points surrounding those that represent the 
observation.  This includes the spatial influence of 
observations and other error factors (i.e., limb effects 
for microwave data, a possible future consideration).  In 
addition, data latency (temporal considerations) can be 
set up to modify data source influence in the variational 
step in this same function. 
 
 
3.4  The Expanded Variational Adjustment 
 

The variational adjustment using GOES radiances 
(Birkenheuer 1999) is being expanded to include GVAP 
layer precipitable water (over the column water 
previously analyzed), GPS total column water, and 
cloud information in one step.  The cloud information is 
made available from the LAPS cloud analysis (Albers et 
al. 1996).  In this newly revised variational approach, 
cloud fraction is included in the moisture solution. 
 
3.5 Cloud Saturation 
 

As a safeguard to assure consistency, a final 
check is made to the field to make sure that moisture is 
saturated in 100% cloudy areas with respect to the 
applicable water phase.    With the variational step now 
including cloud influence, this adjustment is invoked 
less often. 
 
3.6 Quality Control 
 

The final step in the SH algorithm is quality control.  
Each moisture value is compared to the LAPS analyzed 
temperature, and if supersaturated, it is reported and 
reduced to saturation.  Typically, supersaturation rarely 
occurs. 

 
4. VARIATIONAL FORMALISM 

 
The mathematical formalism of the variational 

procedure is presented in equation 1.   The advantage 
of this approach is that it offers a robust method for 
operational application and can accommodate 
nonlinear terms.  
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Each term in (1) is modified by the variable S, which is 
a switch (with the exception of the background term 
which is always on).  Thereby, the terms can be used 
or ignored depending on whether or not data are 
available or if clouds are present.  Furthermore, a user 
can easily add terms for new datasets by simply 
creating a new term.  The variables are as follows: 
 
• Ci the coefficient vector applied to q to adjust the 

moisture field. Ideally this would have the same 
dimensions as q has levels, but may be reduced 
depending on computer horsepower.  Adjustment 
of this parameter is in essence the variational fit to 
the solution, i.e., ciq becomes the adjusted q field.  
The adjustment coefficient is a scalar with a lower 
limit of 0 (never negative).  A value of 1 indicates 
no change to the background.  Because of this, the 
system will only work with a quantity such as 
temperature or humidity that uses absolute units.  
For example, using this approach to analyze 
temperature in degrees F will fail. 

• q the specific humidity profile at one LAPS grid point 
• R the forward-modeled radiance or radiance 

observation with the superscript o. 
• i index for the LAPS vertical (vector dimension of q), 

with a current maximum of 40 (accommodating the 
climatological stratospheric layers needed for the 
forward radiance model). 

• k the index indicating the satellite sounder or imager 
channel used. 

• QGPS the total precipitable water measurement from 
GPS. 

• E the error function (squared quantity) that describes 
the observation or background error, subscripted 
by observation type. 

• L spatial weighting term subscripted by observation 
type.  This weights the smoothed (preanalyzed) 
field value by its proximity to the observation and 
reflects the horizontal influences of the 
measurement.  Each data source has an 
associated gridded field of spatial-weighting terms 
characterizing its proximity to the observation and 
its spatial representation. 

• P the function to convert from pressure to sigma 
coordinates  

 
 

• QGVAP the GOES vapor total precipitable water layer 
data.  The layers are defined in sigma coordinates 
and vary grid point to grid point. 

• j the index of the GVAP layer, with a current 
maximum of 3 (1 is lowest, 3 is highest). 

• Cld cloud function designating cloudy regions in the 
vertical, with dimensions of q. 

• J the functional to be minimized. 
• t is the temperature profile (LAPS) at the same 

location as q. 
• S logical switch for the observation type to be present 

or not.  Each term in the functional can be easily 
included or excluded depending on the presence 
of the data source.  Also new data sources can be 
added by including new terms. 

• qs(t) saturated q as a function of temperature. 
• g cloud fraction indicator as a function of level.  
• G a function of g such that it indicates cloud in the 

column. For radiance measurements, this has the 
advantage of disabling IR terms including GVAP.  
Finally, the GPS term would be unaffected by 
clouds in principle since the data source can 
deliver data in cloudy areas.  However, the 
analysis needs to probably give more credence to 
the cloud field, since it is vital the cloud field 
complements the moisture field.  G can be a linear 
function of cloud such that it might serve to help 
define partly cloudy regions by allowing a smooth 
gradient from total through partly cloudy to clear 
air. 

• GT is a similar function to G, but it may be nonlinear 
and can match the satellite radiometer’s field of 
view.  

 
5. SOLUTION METHODOLOGY 
 

The minimization of (1) is accomplished using the 
same methods as the prior moisture analysis.  The 
Powell method (Brent 1973) employs a multidirectional 
search to seek out a solution.  Typically, two to five 
calls of the algorithm are required to find a solution.  
Each call to the numeric method involves approximately 
25 calls to the functional.  Although more efficient 
methods are available, this technique has worked 
reliably to date.  Model adjoints are not required for this 
technique. 
 
6. EXAMPLE 
 

The very deep and premature monsoon flow over the 
regional observation cooperative (ROC) domain in 
early July 2001 provided a very good signal for 
moisture study.  Figures 1 and 2 contrast the old and 
new analysis schemes.  Both figures depict a  cross 
section of relative humidity from west to east through 
Boulder, Colorado.    

(1) 



 
Fig. 1. Cross section through 40q N latitude 
showing relative humidity and cloud fraction 
through the ROC domain. 
 

 
Fig. 2. Same as Fig. 1 except using the newer 
variational analysis. 
 
For the most part, the two analyses are very similar 
with the newer scheme possibly showing more detail.  
The cloud field is the same in both sets and is depicted 
by shaded features.  The lighter shades indicate low 
cloud fraction while black would show 100% cloud.  It is 
apparent that very low cloud fractions existed; 
therefore, clouds had minor impact on the RH 
adjustment.  Even so, the analysis shows higher RH 
values in partly cloudy areas.  A quantitative evaluation 
of the scheme is currently being performed. 
 
7. SUMMARY 
 

The new functional solution is now being tested 
with broader focus on the run times and feasibility of 
real-time operation.  These aspects of the algorithm 
look promising, even for AWIPS-type resources.  Error 
functions are currently approximated and will require 
refinement.   

 
When running the system in 4DDA mode, it quickly 

becomes apparent that model and analysis moisture 
components must be compatible.  For example, the 
model may base RH computations on the liquid phase 
for all temperatures while the analysis may use ice as a 
reference below some threshold temperature.  Such 
discrepancies can lead to artificial “generation” of water 
or chronic drying of the atmosphere as these 
discrepancies are compounded in the 4DDA cycle.  The 
new variational scheme has demonstrated a resistance 
to this effect during ongoing 4DDA tests. 
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