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1. INTRODUCTION

The Local Analysis and Prediction System (LAPS)
analyzes three-dimensional moisture and other state
variables hourly (or more frequently) over a high-
resolution relocatable domain. LAPS analyses have
been routinely used to initialize local-scale, high-
resolution models such as the Colorado State
University's Regional Atmospheric Modeling System
(RAMS) model and the National Center for Atmospheric
Research’s MM5 (mesoscale model, version 5) as a
means to utilize local data in the forecast model. LAPS
has been integrated into the Advanced Weather
Information Processing System (AWIPS) as part of the
National Weather Service (NWS) modernization.
Research to expand LAPS capabilities is one avenue
toward providing advanced technologies and new
innovations to the operational forecaster.

This paper describes progress toward advancing
the variational technique in the LAPS moisture analysis.
To date, the variational step has been used only with
GOES sounder radiances. Other moisture variables
were analyzed separately and either merged with that
variational result or with the background field prior to
the variational step (Birkenheuer 2000, 1999). This
change will enable the use of more data in the
variational framework. The solution strategy allows
different data sources to be represented by different
terms in the minimized functional. The functional can
automatically adjust to match the datasets present.
More important, this approach accommodates
nonlinear functionals.

1.1 Brief History of LAPS

During the 1980s, FSL conducted forecast
exercises to test its workstation prototypes.
Forecasters were burdened with the impossible task of
reviewing all the incoming data made possible through
new technologies, while producing timely forecasts. It
became obvious that local data needed to be
objectively analyzed in conjunction with nationally
disseminated data. Conceived as a resolution to this
challenge, LAPS was designed to analyze available
local data in real time on affordable computer
workstations and utilize the analyses to initialize local-
scale forecast models. So far LAPS has been
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interfaced with RAMS and MMS5, but in principle it can
function with any weather prediction model. Such
models can address specific problems of a small
forecast domain with greater detail than can be
achieved with nationally disseminated model guidance
(Snook et al. 1998). A more detailed review of LAPS is
available in McGinley et al. (1991).

The LAPS system is routinely tested with new data
sources and innovative improvements, using more
"conventional" data, which typically are nationally
disseminated. Advanced data include Doppler
reflectivity and velocity fields, satellite observations
including GOES infrared (IR) sounder data, wind
profiler data, automated aircraft reports, and dual-
channel ground-based radiometer data. New data
sources included here are GOES-derived layer
precipitable water data (GVAP), and Global Positioning
System (GPS) data.

2. DATA SOURCES SPECIFIC TO THIS UPGRADE
2.1 GOES-Derived Layer Precipitable Water Data

GVAP data were obtained from the University of
Wisconsin - Madison in real time on a daily basis
(Menzel et al. 1998). The new variational scheme
scales the appropriate parts of the LAPS moisture
column to fit each of the three layers provided by GVAP
data. The prior LAPS system only utilized total column
GVAP water vapor data. The GVAP layers (defined as
surface to 0.9 sigma, 0.9 to 0.7 sigma, and 0.7 to 0.3
sigma) are converted to a pressure coordinate system
as part of the GVAP preanalysis. Also as part of this
step, data are distributed on an analysis grid with a
radial influence corresponding to the field of view. In
this case, 30 km GVAP data have a nominal latency of
2 h at the current time.

2.2 Global Positioning System Vapor Delay Data

GPS data refer to derived total column water vapor
(zenith) from GPS signal delay (Wolfe et al., 2000).
These data are obtained in real time with a
characteristic latency of 20 min. GPS data are immune
from cloud effects, and therefore can be used where
clouds are present. A horizontal influence of 12 km
was applied to the GPS data. Similar to the GVAP data



treatment, these data are distributed on an analysis
grid.

2.3 Cloud Data

Gridded cloud data are obtained from the LAPS
cloud analysis, which relies on satellite image data in
addition to Doppler radar, ACARS, surface-based
observations of sky conditions, and pilot reports. These
data define clear fields of view for utilizing satellite
radiance data and help identify regions that require
saturation due to complete cloudiness. In partly cloudy
regions, the scheme relates cloud fraction to RH and
influences the variational result. The partial cloud
enhancement starts at 0.6 cloud fraction assigning a
60% RH at that point, and ramps linearly to saturation
at total cloud cover.

3. LAPS MOISTURE ANALYSIS

The specific humidity (SH) module is one of 17
LAPS algorithms that span everything from data
preparation and quality control (QC) to actual analysis.
In addition to state variables, LAPS also produces
highly specific analyses of special interest, such as
aircraft icing threat and relative humidity with respect to
both mixed and liquid phases. The SH module is one
of the last analyses run, prior to the new mass balance
scheme. It incorporates many fields that have already
been processed such as clouds and surface moisture.

3.1 Background Setup

Like most analysis systems, LAPS requires a
starting field, which it later modifies by adding
information from other datasets. This background, or
first-guess field for the test discussed here, is FSL’s
Mesoscale Analysis and Prediction System (MAPS)
analysis. Updated each hour, MAPS is the
development model of the operational Rapid Update
Cycle (RUC-2) at the National Centers for
Environmental Prediction (NCEP). The background
model moisture data are interpolated to the denser
LAPS grid and reconciled with the LAPS temperature
analysis to avoid supersaturation.

Additionally, LAPS can also use a previous short-
range forecast (i.e., MM5 1-h forecast initialized with
LAPS) and uses this as the background for the next
analysis in the cycle. This four-dimensional data
assimilation (4DDA) scheme is currently being tested
using an hourly update cycle.

3.2 Boundary Layer Moisture

Since the surface analysis uses hourly
observations, its representation of surface moisture is
possibly the most up-to-date moisture field attainable
using conventional data sources, and is key to tracking
moisture changes in the boundary layer. The boundary
layer moisture module mixes surface humidity into the

calculated boundary layer by adjusting the moisture in
the low levels of the 3-D grid.

3.3 GVAP and GPS Pre-analysis

The GVAP and GPS fields are individually
preanalyzed prior to the variational step. This is done
to specify data at all grid points and assure they have a
spatial influence related to instrument characteristics.
The preanalysis consists of a simple nearest gridpoint
assignment of the observation, and a smoothed
interpolated field between observation locations. In
addition to the three GVAP fields (one for each sigma
layer) and the one GPS field, each field has a
corresponding weighting function. The spatial weight
controls the horizontal influence of the data field at grid
points  surrounding those that represent the
observation. This includes the spatial influence of
observations and other error factors (i.e., limb effects
for microwave data, a possible future consideration). In
addition, data latency (temporal considerations) can be
set up to modify data source influence in the variational
step in this same function.

3.4 The Expanded Variational Adjustment

The variational adjustment using GOES radiances
(Birkenheuer 1999) is being expanded to include GVAP
layer precipitable water (over the column water
previously analyzed), GPS total column water, and
cloud information in one step. The cloud information is
made available from the LAPS cloud analysis (Albers et
al. 1996). In this newly revised variational approach,
cloud fraction is included in the moisture solution.

3.5 Cloud Saturation

As a safeguard to assure consistency, a final
check is made to the field to make sure that moisture is
saturated in 100% cloudy areas with respect to the
applicable water phase. With the variational step now
including cloud influence, this adjustment is invoked
less often.

3.6 Quality Control

The final step in the SH algorithm is quality control.
Each moisture value is compared to the LAPS analyzed
temperature, and if supersaturated, it is reported and
reduced to saturation. Typically, supersaturation rarely
occurs.

4. VARIATIONAL FORMALISM

The mathematical formalism of the variational
procedure is presented in equation 1. The advantage
of this approach is that it offers a robust method for
operational application and can accommodate
nonlinear terms.
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Each term in (1) is modified by the variable S, which is
a switch (with the exception of the background term
which is always on). Thereby, the terms can be used
or ignored depending on whether or not data are
available or if clouds are present. Furthermore, a user
can easily add terms for new datasets by simply
creating a new term. The variables are as follows:

» C;i the coefficient vector applied to g to adjust the
moisture field. ldeally this would have the same
dimensions as q has levels, but may be reduced
depending on computer horsepower. Adjustment
of this parameter is in essence the variational fit to
the solution, i.e., ¢ciqg becomes the adjusted q field.
The adjustment coefficient is a scalar with a lower
limit of O (never negative). A value of 1 indicates
no change to the background. Because of this, the
system will only work with a quantity such as
temperature or humidity that uses absolute units.
For example, using this approach to analyze
temperature in degrees F will fail.

 ( the specific humidity profile at one LAPS grid point

« R the forward-modeled radiance or radiance
observation with the superscript o.

* iindex for the LAPS vertical (vector dimension of q),
with a current maximum of 40 (accommodating the
climatological stratospheric layers needed for the
forward radiance model).

» k the index indicating the satellite sounder or imager

channel used.

Q°P® the total precipitable water measurement from

GPS.

» E the error function (squared quantity) that describes
the observation or background error, subscripted
by observation type.

» L spatial weighting term subscripted by observation
type. This weights the smoothed (preanalyzed)
field value by its proximity to the observation and
reflects the horizontal influences of the
measurement. Each data source has an
associated gridded field of spatial-weighting terms
characterizing its proximity to the observation and
its spatial representation.

» P the function to convert from pressure to sigma
coordinates

Q%P the GOES vapor total precipitable water layer

data. The layers are defined in sigma coordinates
and vary grid point to grid point.

* j the index of the GVAP layer, with a current

maximum of 3 (1 is lowest, 3 is highest).
Cld cloud function designating cloudy regions in the
vertical, with dimensions of q.

 J the functional to be minimized.

t is the temperature profile (LAPS) at the same
location as g.

» Slogical switch for the observation type to be present
or not. Each term in the functional can be easily
included or excluded depending on the presence
of the data source. Also new data sources can be
added by including new terms.

» (s(t) saturated q as a function of temperature.

g cloud fraction indicator as a function of level.

» G a function of g such that it indicates cloud in the
column. For radiance measurements, this has the
advantage of disabling IR terms including GVAP.
Finally, the GPS term would be unaffected by
clouds in principle since the data source can
deliver data in cloudy areas. However, the
analysis needs to probably give more credence to
the cloud field, since it is vital the cloud field
complements the moisture field. G can be a linear
function of cloud such that it might serve to help
define partly cloudy regions by allowing a smooth
gradient from total through partly cloudy to clear
air.

e GT is a similar function to G, but it may be nonlinear
and can match the satellite radiometer's field of
view.

5. SOLUTION METHODOLOGY

The minimization of (1) is accomplished using the
same methods as the prior moisture analysis. The
Powell method (Brent 1973) employs a multidirectional
search to seek out a solution. Typically, two to five
calls of the algorithm are required to find a solution.
Each call to the numeric method involves approximately
25 calls to the functional. Although more efficient
methods are available, this technique has worked
reliably to date. Model adjoints are not required for this
technique.

6. EXAMPLE

The very deep and premature monsoon flow over the
regional observation cooperative (ROC) domain in
early July 2001 provided a very good signal for
moisture study. Figures 1 and 2 contrast the old and
new analysis schemes. Both figures depict a cross
section of relative humidity from west to east through
Boulder, Colorado.
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Fig. 1. Cross section through 40° N latitude
showing relative humidity and cloud fraction
through the ROC domain.
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Fig. 2. Same as Fig. 1 except using the newer
variational analysis.

For the most part, the two analyses are very similar
with the newer scheme possibly showing more detail.
The cloud field is the same in both sets and is depicted
by shaded features. The lighter shades indicate low
cloud fraction while black would show 100% cloud. Itis
apparent that very low cloud fractions existed;
therefore, clouds had minor impact on the RH
adjustment. Even so, the analysis shows higher RH
values in partly cloudy areas. A quantitative evaluation
of the scheme is currently being performed.

7. SUMMARY

The new functional solution is now being tested
with broader focus on the run times and feasibility of
real-time operation. These aspects of the algorithm
look promising, even for AWIPS-type resources. Error
functions are currently approximated and will require
refinement.

When running the system in 4DDA mode, it quickly
becomes apparent that model and analysis moisture
components must be compatible. For example, the
model may base RH computations on the liquid phase
for all temperatures while the analysis may use ice as a
reference below some threshold temperature. Such
discrepancies can lead to artificial “generation” of water
or chronic drying of the atmosphere as these
discrepancies are compounded in the 4DDA cycle. The
new variational scheme has demonstrated a resistance
to this effect during ongoing 4DDA tests.
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