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1. INTRODUCTION 

Retrievals of water vapor profiles are required for 
applications ranging from numerical weather forecasting 
to climate modeling and climate change studies.  As 
these fields advance, there is an increasing need for 
weather and climate water vapor studies over complex, 
cloudy conditions (e.g. Lietzke et al. (2001)).   The 
Advanced Microwave Sounding Unit (AMSU), first flown 
on board the NOAA-15 satellite in 1998, provides global 
water vapor measurements in clear and cloudy skies.  
This broad capability makes it a key instrument for water 
vapor retrievals.  This paper describes an algorithm for 
the retrieval of water vapor profiles from AMSU.  The 
algorithm has the ability to simultaneously retrieve water 
vapor profiles, temperature profiles, and microwave 
surface emissivities.  This ability allows for more 
accurate water vapor retrievals, as is shown using 
simulated data. 

2. ALGORITHM DESCRIPTION 

The retrieval algorithm is a physically based iterative 
optimal-estimation scheme adapted from the method of 
Engelen and Stephens (1999).  The algorithm can take 
data from AMSU-B, from AMSU-B and AMSU-A 
combined, or from SSM/T-2.  A variety of parameters 
can be retrieved including profiles of water vapor mixing 
ratio, joint water vapor and temperature profiles 
(including surface temperature), and water vapor and 
temperature profiles along with microwave surface 
emissivities. 

The retrieval scheme requires an a priori guess of 
the water vapor and temperature profiles as well surface 
emissivities at the relevant microwave frequencies.  This 
is used to constrain a non-linear iterative optimal-
estimation scheme which uses the method of Rogers 
(1976) to minimize the cost function Φ  to find the 
optimal solution x, where: 
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where x is the vector of parameters to be retrieved, xa is 
the a priori vector, y is the set of observations, F(x) is a 
forward radiative transfer model used to compute 
radiances given x, and Sa and Sy are the error 
covariance matrixes of the a priori data and the 
observations, respectively.  The vector of retrieval 
parameters may include the profile of water vapor mixing 
ratio alone, or may include the temperature profile and 
surface emissivities as well.  The a priori error 
covariance matrix includes the variances of and 
correlations between the retrieval parameters, thus 
providing a constraint on the solution from a priori 
knowledge.  The error covariance matrix of the 
observations includes forward model errors and 
uncertainty in the observed radiances. 

For the forward radiative transfer, monochromatic 
microwave brightness temperatures were computed 
using numerical integration of the radiative transfer 
equation for a plane parallel, absorbing atmosphere 
together with Liebe’s MPM92 (Liebe and Hufford 1993) 
model of microwave atmospheric attenuation.  The 
Rayleigh-Jeans distribution was used for the source 
function. 

3. AMSU SIMULATIONS 

To test the retrieval scheme, simulations of AMSU 
observations have been created.  100 mid-latitude ocean 
profiles from the NOAA-88 profile data set have been 
input to the radiative transfer model to calculate AMSU-A 
and AMSU-B brightness temperatures.  Independent 
random noise was added to each of the simulated 
brightness temperatures in order to simulate random 
sensor uncertainty.  The noise was assumed to be 
Gaussian with a standard deviation set to the 
temperature sensitivity (NEDT) of the appropriate AMSU 
channel.  Table 1 presents the characteristics used to 
simulate the AMSU instruments.  The temperature of the 
lowest level of the NOAA-88 profile was taken as the 
surface temperature.  This surface temperature, together 
with a randomly chosen surface wind speed taken from 
the SSM/I sea surface wind speed cal/val distribution, 
were input to the ocean surface model of Yueh (1997) to 



  

 
 

compute microwave emissivities at the appropriate 
frequencies. 

The first guess for the retrieval algorithm was 
obtained by adding noise to the original NOAA-88 
profile.  The noise was assumed to be Gaussian with the 
parameters presented in Table 2 and is correlated using 
the correlation matrix calculated from the entire set of 
NOAA-88 mid-latitude ocean profiles. 

The a priori error covariance matrix Sa was 
computed using the errors of the first guess in Table 2 
along with the correlations for the retrieval variables 
calculated from the entire set of NOAA-88 mid-latitude 
ocean profiles.  The error covariance matrix for the 
observations, Sy, was computed using the AMSU 
characteristics in Table 1.  The AMSU channels were 
assumed to be uncorrelated.  Forward model error was 
not included in Sy, since the effects of forward model 
error should be negligible for simulated data where the 
simulations use the same forward model as the retrieval 
scheme.  

 

 Channel Frequency (GHz) NEDT 
(K) 

1 23.8 0.3 
2 31.4 0.3 
3 50.3 0.4 
4 52.8 0.25 
5 53.596 ± . 115 0.25 
6 54.4 0.25 
7 54.94 0.25 
8 55.5 0.25 
9 57.290344 = f0 0.25 
10 f0 ± . 217 0.4 
11 f0 ± . 3222 ± .048 0.4 
12 f0 ± . 3222 ± . 022 0.6 
13 f0 ± . 3222 ± . 010 0.8 
14 f0 ± . 3222 ± . 0045 1.2 

AMSU-A 

15 89.0 0.5 
1 89.0 0.8 
2 150.0 0.8 
3 183.31 ± 1.0 0.8 
4 183.31 ± 3.0 0.8 

AMSU-B 

5 183.31 ± 7.0 0.8 
 
Table 1.  AMSU characteristics used in simulations. 
 
 

Parameter Std.  Deviation Source 
Water Vapor 
Mixing Ratio 

0.0005-2.1 g/kg 
(see figure 2) English (1999) 

Temperature 3.0 K Nutter et al. (1999) 

Emissivity .01 

2 m/s wind speed 
and 

3.0 K surface 
temperature 
uncertainty 

 
Table 2.  Magnitude of first guess errors. 

4. RESULTS 

The algorithm has been used to retrieve profiles 
from the simulated data for a number of different cases.  
One set of cases uses AMSU-B data, while the other 
uses both AMSU-A and AMSU-B for the same set of 100 
profiles.  Retrievals of water vapor profiles only, joint 
retrievals of temperature and water vapor profiles, and 
joint temperature, water vapor and emissivity retrievals 
have been run.  For AMSU-A, three emissivities are 
retrieved with the 50-60 GHz channels grouped into one 
emissivity.  For AMSU-B, three emissivities are retrieved 
with all of the channels centered around 183 GHz 
grouped into one emissivity.  For each of the 100 
profiles, the appropriate brightness temperatures have 
been simulated and input to the retrieval scheme for 
each retrieval case described above.  An example of a 
retrieved mixing ratio profile for both AMSU-B and 
AMSU-A data retrieving water vapor, temperature, and 
surface emissivities simultaneously is shown in Figure 1.  
The retrieved profiles are then compared to the original 
and an rms error as well as a mean bias has been 
computed for each level of the profile.  Table 3 contains 
the profile averaged rms error, bias, and maximum bias 
for the data set broken down by retrieval case. 

Figures 2 through 4 show the water vapor mixing 
ratio profile errors for the AMSU-B retrievals for water 
vapor profile retrieval only, temperature and water vapor 
profile retrieval, and temperature and water vapor profile 
along with surface temperature and surface emissivity 
retrieval respectively.  With just AMSU-B data, the 
retrieval should be sensitive primarily to the water vapor.  
However, a reduction in retrieval error, particularly in 
retrieval bias, is seen in going from water vapor only to 
water vapor, temperature, and emissivity retrievals.  
While there is some temperature and emissivity 
information in the AMSU-B channels, this improvement 
of the water vapor retrievals by simultaneously retrieving 
temperature and surface emissivity along with water 
vapor is in large part due to the constraint provided by 
the a priori error covariance matrix Sa.  If only the water 
vapor profile is retrieved, then the water vapor profile 
must compensate for first guess errors in temperature 
profile and surface properties.  This compensation 
shows up primarily as bias in the retrieval that 
disappears as the retrieval of a temperature profile and 
surface emissivities are added.  The a priori error 
covariance matrix helps to constrain the temperature 
and emissivity retrievals by correlating them to the 
retrieved water vapor profile.  Some residual bias from 
the retrieval scheme remains even when water vapor, 
temperature, and emissivity are retrieved. 

Figures 5 through 7 show the three different 
retrieval cases with both AMSU-B and AMSU-A data.    
The water vapor retrieval errors for all three cases are 
reduced in going from the water vapor retrieval only to 
the water vapor, temperature, and emissivity 
simultaneous retrieval.  With both AMSU-B and AMSU-A 
data, both water vapor and temperature profiles can be 
directly retrieved, thus further improving the water vapor 
profile retrieval.  As shown in Table 3, the AMSU-B and 
AMSU-A water vapor retrievals do better (i.e. have lower 



  

 
 

mean rms error and lower bias compared to truth) than 
the AMBU-B retrievals when temperature is 
simultaneously retrieved.  The water vapor only retrieval, 
though, is better using just the AMSU-B data.  The 
AMSU-A data don’t contain much direct information 
about water vapor.  Without the temperature retrieval, 
the effect of the AMSU-A data is to add noise to the 
retrieval. 
 
 

Data Retrieval 
Type 

Mean 
RMS 
Error 
(g/kg) 

Mean 
Abs. 
Bias 

(g/kg) 

Max. 
Abs. 
Bias 

(g/kg) 
Water Vapor 
Only .33 .08 .20 

Water Vapor + 
Temperature .28 .06 .19 AMSU-

B 
Vapor + Temp 
+ Emissivity .23 .03 .08 

Water Vapor 
Only .37 .10 .32 

Vapor + 
Temperature .25 .03 .11 

AMSU-
B and 

AMSU-
A Vapor + Temp 

+ Emissivity .18 .02 .06 

 
Table 3.  Statistics for the water vapor mixing ratio 
retrievals averaged over the profile levels.  Mean and 
maximum biases are for the absolute value of the bias. 
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Figure 1.  Retrieved, true, and first guess water vapor 
mixing ratio profiles from AMSU-B and AMSU-A data for 
a simultaneous water vapor, temperature and surface 
emissivity retrieval. 
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Figure 2. Errors from AMSU-B retrieval of water vapor 
mixing ratio.  Only water vapor was retrieved. 
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Figure 3.  Errors from AMSU-B retrieval of water vapor 
mixing ratio.  Water vapor and temperature profiles were 
retrieved simultaneously. 
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Figure 4.  Errors from AMSU-B retrieval of water vapor 
mixing ratio.  Water vapor and temperature profiles as 
well as surface emissivities were retrieved 
simultaneously. 
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Figure 5.  Errors from AMSU-B and AMSU-A retrieval of 
water vapor mixing ratio.  Only water vapor was 
retrieved. 
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Figure 6.  Errors from AMSU-B and AMSU-A retrieval of 
water vapor mixing ratio.  Water vapor and temperature 
profiles were retrieved simultaneously. 
 
 

-1 -0.5 0 0.5 1 1.5 2 2.5 3

100 

150 
200 
250 
300 
400 
500 

700 
850 

1000 
Mixing Ratio (g/kg) 

Pr
es

su
re

 (m
b)
 

Mean RMS Error             
Mean Bias                   
First Guess Error (1 sigma)

 
Figure 7.  Errors from AMSU-B and AMSU-A retrieval of 
water vapor mixing ratio.  Water vapor and temperature 
profiles as well as surface emissivities were retrieved 
simultaneously. 
 

5. CONCLUSIONS AND FUTURE WORK 

An algorithm for the retrieval of water vapor profiles 
from AMSU has been presented.  The algorithm is quite 
general, in that it can be applied to data from AMSU as 
well as other satellite platforms such as SSM/T-2 and 
the upcoming SSM/IS instrument, which should become 
available in 2002.  Water vapor profiles can be retrieved 
with or without profiles of temperature profiles and 
surface emissivities.  It was shown using simulated 
AMSU-A and AMSU-B measurements that, even with 
AMU-B measurements alone, water vapor retrieval 
performance is improved for the case of simultaneous 
water vapor, temperature, and emissivity retrievals.  
Future work will concentrate on applying the algorithm 
over land and to cloudy conditions. 
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