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1. INTRODUCTION 

 
 Anthropogenic activities have significant 
impacts on biogeochemical cycles. To better 
understand the changes occurring in the atmosphere 
and to clearly distinguish natural from anthropogenic 
influences, it is extremely important to monitor the 
temporal and spatial distributions of gases and identify 
their sources and sinks. Carbon monoxide (CO) is one 
of the key tropospheric trace species. With roughly a 2 
month lifetime, and with diverse sources, both natural 
and anthropogenic (CH

4
oxidation, NMHC oxidation, 

biomass burning, fossil fuel burning etc.), CO can serve 
as a useful tracer of atmospheric transport. CO also 
affects the concentration of the hydroxyl radical (OH), 
which is involved in much of the chemistry in the 
troposphere. However, OH has an extremely short 
lifetime and is difficult to measure. Therefore, the ability 
to continuously monitor CO from space should provide 
an important window on tropospheric chemistry. 
  To measure the spatial and temporal variation 
of the CO profile and total column amount in the 
troposphere, the Measurements of Pollution In The 
Troposphere (MOPITT) instrument was launched in 
1999 on board the NASA Terra satellite. MOPITT is an 
eight-channel gas correlation radiometer; each channel 
generates an average (A) signal and a difference (D) 
signal (Drummond, 1992). The A signals are sensitive 
to the background emissions, while the D signals are 
sensitive to the target gas vertical distribution. MOPITT 
measurements can resolve the vertical distribution of 
tropospheric CO in 3-4 layers with a 22X22 km 
horizontal resolution.               
 The MOPITT operational retrieval is based on 
the Maximum Likelihood (ML) method (Pan et al., 1998; 
Rodgers, 2000). The ML retrieval algorithm seeks the 
statistically most likely CO profile consistent with both 
the observed radiances and a priori information. The 
role of the a priori mean profile and covariance matrix is 
to constrain the retrieved profile to fall within the range 
of physically realistic solutions (based on variability  
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statistics of a selected set of observed in-situ profiles). 
The relative weighting of the a priori information and 
information from the measured radiances in the 
retrieved profile is controlled directly by the a priori 
covariance matrix and measurement error covariance 
matrix. 

The operational MOPITT CO retrieval currently 
uses a fixed global a priori. This approach was adopted 
initially to ensure that observed geographical variations 
in the retrieval results are due to information in the 
measured radiances rather than features of the a priori. 
Studies (Hansen et al.,1995; Pan, et al., 1998) have 
confirmed that the choice of a priori affects the accuracy 
of the retrievals. There is some question as to whether 
the use of a global a priori is an adequate 
representation of the seasonal variation in the CO 
profiles for diverse locations. Furthermore, only limited 
regional surface observations and aircraft 
measurements from field experiments are available for 
the construction of the MOPITT global a priori. The 
purpose of this paper is to quantify the sensitivity of the 
retrieval to the use of a fixed global a priori in the ML 
method. We conduct simulation experiments to explore 
the impact of using a fixed global a priori on the 
MOPITT CO retrievals. This is further illustrated using 
an alternative criterion to dynamically choose an a priori 
error covariance matrix (the DAP method) which 
constrains the CO retrievals using primarily 
measurement errors. The method will be described in 
section 2. The simulated CO profiles retrieved from the 
DAP method are compared to CO profiles retrieved 
from the ML method in section 3.            

   
 2. DATA and the DYNAMIC A PRIORI Method  
  

MOPITT has four CO thermal channels, two 

CO solar reflectance channels and two CH 4  solar 

reflectance channels.  Characteristics of the MOPITT 
channels are described in Drummond (1992). The 
radiative transfer equation (RTE) for the upwelling 
MOPITT A and D signals for each channel is described 
in Pan et al., (1998). The MOPITT transmittance model 
(Edwards, et al., 1999) is used in this study to simulate 
MOPITT radiances while the mixing ratio of target and 
interfering gases, viewing geometry, vertical thermal 
profiles and surface emissivity and temperature are 



used as inputs. If the measurement errors can be 
described approximately by a Gaussian distribution, 
then a regularized estimate of the state vector X (CO 
vertical profile, surface skin temperature and emissivity) 
is given by the minimizer of the penalty function 
(O’Sullivan and Wahba 1985; Wahba, 1990):         
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In Eq. (1), Y m
 is a vector of MOPITT radiances, X b

 is 
the initial guess profile; F(X) is the radiative transfer 
model described in Pan et al., (1998); E is the expected 
covariance matrix of measurement errors and the 
forward model errors; 

γC is the first guess expected 

error covariance matrix used to constrain the solution, 
and is defined as γ*C where C is the a priori error 
covariance matrix for CO profiles, surface skin 
temperature and emissivity. C is generated from CO 
profiles collected from field campaigns (see Section 3), 
while γ is a smoothing parameter, which balances the fit 
to the observations (first term in Eq. (1)) and the fit to 
the a priori  (the second term in Eq. (1)). In the case of 
the ML method, the C is a statistical constraint based 
on other measurements and does not vary. This is 
equivalent to setting γ equal to unity. 

Since the RTE is nonlinear, the optimal state 
parameters must be found iteratively. The Newtonian 
nonlinear iteration method (O’Sullivan and Wahba, 
1985) is applied here such that 
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where δYn
m  indicates the differences between the 

observed and calculated radiances, X0
(=X

b
) is a 

vector of the first guess state profile generated from the 
mean of all CO profiles, and K is the weighting function 
matrix  defined by XKY ∂=∂ . The normalized 
radiance residual is defined as  
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where k is an index of channel number, nch is the total 
number of channels used in the retrieval, and kvar  is 

the diagonal term of the error covariance matrix E, 
which is specified from differences between calculated 
and measured radiances. In each iteration, the 
discrepancy principle (Morozov, 1966) provides 
smoothing parameters so that the residual norms are 
close to a priori upper bounds for the A and D signals 
respectively. The a priori upper bound for A or D signals 
is defined as 
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where η 2

k  is the square of the instrument noise plus 

the square of the forward model errors in channel k. 
The error is assumed to be random for each channel. 
Here the measurement noise is known from the 
calibration. The forward model error is assumed to be 
2% of the instrument noise for each channel for the 
determination of σ. If R n + 1

> σ, then the solution is 

assumed to be over-constrained, and γ will be 
increased for the next iteration. If R n + 1

< σ, then the 

solution is assumed to be under-constrained, and γ will 
be decreased. For each iterative step, a value of γ for A 
signals and a value of γ for D signals are determined. 
The iteration stops when the absolute value of the 
difference between R n + 1

and σ is less than a 

reasonable small number, assumed to be 0.05σ. 
However, because the CO vertical distribution may not 
be completely resolved by MOPITT, retrieval results 
may not meet the required criterion after several 
iterations. In this case, the solution having the smallest 
difference between R n + 1

and σ is selected. The 

retrieval results with R n + 1
 larger than 0.5σ are 

discarded. The initial value of γ, γ 0 , is taken as 10. By 

using this method, reasonable γ can be found, and the 
retrieved CO profiles and total column will be an inverse 
solution of the radiative transfer equation in the sense 
of minimizing the penalty function. In summary, in ML, 
we assume C is known completely and is held constant 
in the retrieval. In DAP, C is allowed to vary but the 
forward model and instrument noise become the 
constraint. 
 
3. RETRIEVAL RESULTS  
 
 To show how different a priori background 
covariance matrices affect the retrieval results, 
simulated retrieval experiments have been conducted. 
A total of 525 CO profiles with ancillary temperature and 
water vapor vertical distributions were collected from 10 
different geophysical locations for varied seasons 
(Wang, et al., 1999). The CO profiles with odd index 
numbers are separated from those with even index 
numbers. The 263 CO profiles with odd index number 
are used as a training set and the other 262 CO profiles 
are used as a test set. The a priori covariance matrix 
(C) is generated from the training set. The square roots 
of the diagonal terms of C for the training set are shown 
in Fig. 1. In real MOPITT retrievals, because of various 
limitations of the training set profiles (poor 
representation of some geographical areas and 



seasonal variability, etc.) this a priori matrix cannot be 
assumed to perfectly represent global CO variability. In 
this study, CO profiles measured from Carr, Colorado 
and during the Pacific Exploratory Mission in the 
Western Pacific Region (PEMWEST) phase B (Wu, et 
al., 1997) are used to generate alternative a priori 
matrices (CARR C and PEM-B C). As shown in Fig.1, 

 
        Fig. 1. The square roots of the diagonal terms of 
CO vertical profiles for a priori covariance matrices C, 
CARR C and PEM-B C.  
 
the CO variations for different vertical levels over Carr 
(CARR C) is less than those for PEM-B and is used to 
represent the model CO ensemble or local observed 
CO ensemble. The a priori matrix, PEM-B C, is used to 
represent cases of over-estimated background errors 
for both the ML and DAP algorithms. In these studies, 
the ML a priori mean profile is held constant. 
 The retrieval results for all three a priori 
matrices for both ML and DAP methods are shown in 
Figs. 2(a) and 2(b) respectively. For all retrieval 
experiments, the instrument noises for the A and D 
signals and forward model error are randomly added to 
the forward calculated MOPITT radiances. The mean of 
the training set is used as the initial profile for all 
retrievals. Because the CO profiles are divided into the 
testing set and the training set, the STD of the CO 
training set (Fig. 1) could quantify the CO variations for 
different vertical levels for the testing set (not shown). 
Under the condition that the measurement errors and 
the a priori distribution are well known and are well-
represented by a Gaussian distribution, the ML method 
will provide the best estimates of the state parameters 
(ML with C cases) by minimizing the penalty function 
(Wahba, 1985) (Fig. 2). However, in real global 
MOPITT retrievals, this detailed knowledge of the 
background error covariance matrix may not be 
available. Some retrieval results may be under-
constrained by the a priori matrix like PEM-B C (over- 
represented cases).  Some retrieval results may be 

 
         Fig. 2. The RMSE of vertical CO mixing ratio 
between the true profiles and CO retrievals from (a) ML 
method and (b) DAP method by using C, CARR C and 
PEM-B C as the a priori covariance matrices.   
 
over-constrained by the a priori matrix like CARR C 
(under-represented cases), where a small a priori matrix 
(smaller standard deviation) will decrease the relative 
magnitude between TKCK  and E in Eq. (2) and the CO 
retrieval will be more tightly constrained by the a priori. 
The RMSE (Root Mean Square of Errors) of all CO 
profiles, and the RMS (Root Mean Square) values of 
true fractional CO column error for ML with PEM-B C, 
ML with CARR C, ML with C and DAP with C are listed 
in Table 1.  
 
 ML with 

PEM-B 
ML with 
CARR C 

ML with 
C 

DAP with 
C 

RMSE all 
CO levels 
(ppbv) 

 
18.8004 

 
16.3173 

 
13.7083 

 
13.6843 

RMSE of 
true 
fractional 
CO 
column 
error (%) 

 
6.8 

 
6.18 

 
4.72 

 
4.71 

 
Table 1. RMSE (Root Mean Square of Errors) 

of all CO profiles and the RMS (Root Mean Square) 
values of true fractional CO column error for ML with 
PEM-B C, ML with CARR C, ML with C and DAP with C 
cases. 

On the other hand, CO profiles retrieved with 
the DAP method are less affected by a pre-chosen a 
priori covariance matrix (Fig. 2(b)) than those retrieved 



from the ML method. In the DAP CO retrieval, the 
relative magnitude between TKCK  and E in Eq. (2) is 
dynamically adjusted to satisfy the criteria mentioned in 
Section 2 according to the initial profile (

0X ), the 

instrument and forward model noises (E), the vertical 
resolution of MOPITT measurements (K), the estimated 
background error (C) and the true CO profile. The γ 
found from the smallest difference between radiance 
residuals (defined in Eq. (3)) and a priori upper bound 
(defined in Eq. (4)) (Fig. 3(b)) can provide reasonably 
good CO retrievals (Fig. 3(a)). However, to be useful 
practically in an operational sense, the DAP method 
would require greater characterization of the 
measurement errors (both radiance noise and forward 
model) than is currently available for the MOPITT 
instrument.     

 
Fig. 3. The RMSE of (a) CO retrieval and (b) 

absolute value of radiance residuals minus a priori 
upper bound (abs(R-ó)) changed with different γ value 

for D signal.    
 
4. CONCLUDING REMARKS 
  

The role of the a priori covariance matrix in the 
retrieval algorithm is to provide extra background 
information about the retrieval parameters, to constrain 
the retrieval results by truncating the instrument errors 

and forward model errors from the measurement 
information, and to stabilize the matrix inversion. Our 
studies show that ML retrievals produce the smallest 
retrieval errors when the simulation profiles are 
statistically consistent with the selected a priori matrix. 
When processing MOPITT real operational data by 
using the ML method, however, the fixed covariance 
generated from limited regional surface observations 
and aircraft measurements from field experiments may 
not be optimum. Compared with the ML, retrievals from 
the DAP method are less affected by the pre-chosen a 
priori covariance matrix. However, this method requires 
good characterization of the measurement error. In the 
future, when MOPITT processing has stabilized and we 
better understand the measurements and associated 
error sources, work will begin on the implementation of 
a variable a priori that depends on location and season. 
This will be tested thoroughly with data from validation 
sites and field campaigns. 
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