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1. INTRODUCTION

Hurricanes are destructive natural phenomena.
On average a half of dozen or so form each year over
the warm tropical and subtropical waters of the North
Atlantic and track westward for thousands of kilome-
ters. Historically, hurricanes account for a majority of
the costliest weather disasters in the United States.
They rival earthquakes in destructive potential and
loss of life. Despite technological advances in moni-
toring and prediction, hurricanes retain their potential
to cause severe damage and numerous deaths (Ar-
guez and Elsner 2001). During 1998, hurricane Mitch
became a grim reminder that hurricanes can quickly
kill thousands of people. In the United States, pop-
ulation and demographic shifts toward the coast are
making the problem worse as development flourishes
in areas prone to hurricane strikes: the warm sub-
tropical shorelines and islands of the Atlantic Ocean
and Gulf of Mexico. Knowledge of their past occur-
rence, even if it is incomplete, provides clues about
their future frequency and intensity that goes beyond
what present numerical climate models are capa-
ble of. This understanding is important for land-use
planning, emergency management, hazard mitiga-
tion, (re)insurance applications and, potentially, the
long-term weather derivative market. Climatologists
have been issuing seasonal hurricane activity fore-
casts for the North Atlantic using since 1984 (Gray,
1984; Elsner et al., 1996).

Some understanding has been achieved in solv-
ing the climate puzzle with regard to the question of
where hurricanes are likely to go based on conditions
a month or two in advance of the season. However,
current seasonal forecast models for the entire North
Atlantic basin do not incorporate spatial and tempo-
ral information. Thus, they fail to provide specific
seasonal activity forecasts for different geographic
regions of the hurricane basin, which includes the
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Gulf of Mexico and Caribbean Sea. This paper, an
abstract of Jagger et al. (2001), introduces a new
class of space-time statistical models for count data
that can be used for seasonal hurricane prediction.
These models incorporate both the spatial and tem-
poral correlation observed in hurricane activity.

2. DATA

Hurricanes are tropical cyclones with maximum
sustained winds reaching 65 kt or greater. Hurricane
positions and intensities are obtained from the best-
track records (Neumann et al., 1999), which are a
compilation of the six-hourly information of all tropical
cyclones back to 1886. For this paper we use data
data from year 1900 through year 2000. However,
there are issues that could bias our model using the
hurricane data before the use of aircraft reconnais-
sance in 1944. These issues are addressed in the
full paper by considering the relationships between
the pre and post 1944 starting and ending positions
for the hurricanes in the best track data set. Although
this limited comparison does not prove the reliability
of the earlier years, it does provide confidence that
the modeling results presented in this paper will not
be overly influenced by a potential data bias.

3. MODEL GRID

For the spatial structure of our model we divide
the North Atlantic basin into a 6� by 6� latitude and
longitude grid. Data consists of the annual hurri-
cane counts in the grid boxes. A tropical cyclone that
records a position at hurricane intensity within the
box is counted once. A hurricane that loops around
and reenters the box is counted as a single hurri-
cane. Grid choice is a compromise between sample
size and resolution.

We remove grids having mostly land or historically
low hurricane activity, leaving gridS with 40 cells. Re-
gion S with the total hurricane occurrences over the
94-yr period 1899 through 1993, are shown in Fig. 1.
We use count values in the grid boxes outside region
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Figure 1: Grid boxes indicate the total number of hur-
ricanes over the period 1900–93. The black line (re-
gion S) outlines the 40 grid boxes used in the model.
Hurricane activity in the surrounding boxes are used
as boundary conditions.

S as boundary conditions for the model. However,
since these are not available when creating sample
forecasts, we set the boundary values to climatology.

4. RIGHT-TRUNCATED POISSON SPACE-TIME
MODEL

Hurricane frequencies over time and space form a
space-time counts process. The dependence struc-
ture of this type of data can be modeled by a con-
ditional probability approach (Bartlett, 1968; Whittle,
1963; Besag, 1974; Gilks et al., 1996). Besag (1974)
introduce conditionally specified auto-Poisson mod-
els for spatial counts data, which link observation of
a Poisson process at a given location with those at
its spatial neighborhoods. Since the auto-Poisson
model proposed by Besag (1974) does not allow
positive coupling, we consider a class of space-time
auto-regression,(TPSTAR), models for hurricane ac-
tivity based on the right-truncated Poisson distribu-
tion:

Pr(H = x) =
�x

x!
PM

w=0 (�
w=w!)

; x = 0; : : : ;M

where M is an upper bound for the annual number
H of hurricanes occurring in a given grid box during
any given year.

We restrict the specification to a spatially invari-
ant, nearest neighbor, first order autoregressive model,
with predictors. The space-time neighborhood con-
sists of the current season’s north, south, east and
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Figure 2: The space-time neighborhood of the refer-
ence grid box (site) used to model annual hurricane
activity. The shaded objects indicate grid boxes used
in the model. The previous period represents last
year’s hurricane activity in the grid box of interest.

west sites values as well as the previous seasons
value as shown in Fig. 2. The TPSTAR model based
on this neighborhood requires three coupling param-
eters 
0h; 
0v ; 
1c for the east-west, the north-south
and the temporal lag-one coupling, respectively.

Each grid box (t; ij) represents a 6� by 6� region
for one year. Let the response values Ht;ij , be the
number of distinct hurricanes passing into any por-
tion of the grid (i; j) 2 S during year t. The location
centers of each grid box shown in Fig. 1 have lon-
gitude given by �101� + 6� � i for i = 0 : : : 10 and
latitude given by 9� + 6� � j for j = 0 : : : 7. Region S
has i = 1 : : : 9 and j = 1 : : : 6.

We can describe the distribution model condition-
ally as:

8ij 2 S : Ht;ij jh@f(t;ij)g � tpois(�t;ij ;M) (1)

where h@(t;ij) is the vector of five response values,
ht;i�1;j ; ht;i+1;j ; ht;i;j�1; ht;i;j+1 and ht�1;i;j , in the neigh-
borhood of the location, (t; i; j), and tpois is the right-
truncated Poisson distribution with rate �t;ij trun-
cated at M .

Thus, We have the following form for the TPSTAR
model of hurricane activity:

log(�t;ij) = Cij(t) +


0h(Ht;i+1;j +Ht;i�1;j) +


0v(Ht;i;j+1 +Ht;i;j�1) +




1c(Ht�1;i;j) (2)

where Cij(t) = �ij +

pX

k=1

bkzk(t)

with bk the coefficient for the kth yearly covariate and
�ij the grid ij offset.

We chose M = 10 for the grid boxes, since it
is larger than the maximum number of hurricanes
observed in any grid box per year. The value of M is
small enough to observe positive coupling, yet large
enough to compare the results of this model with
models based on the Poisson distribution.

The model makes use of three predictors types:

1. neighborhood response values or coupling grid
box frequencies, with parameters 
0h, 
0v, and

1c.

2. local offsets, represented by �ij where

�ij = con + longi + latj with sum constraints
PlgN

i=1 longi = 0 and
PltN

j=1 longj = 0 where con
the intercept, and lgN and ltN are the number
of longitude (9), and latitude (6) regions. This
reduces the number of parameters associated
with offsets from 40 to 14 in the present case.
Since long9 and lat6 are determined by the sum
constraints, they are not reported.

3. yearly global covariates denoted by zk(t).

Predictors of type three represent the climate
covariates as identified by previous research
studies (Jagger et al., 2001). Here we consider
the influence of the covariate to be the same
across grid boxes, and allow the value of the
covariate to vary in intensity from year to year.
The number of covariates is restricted by data
availability. The climate covariates used in the
TPSTAR model include:

Warm & Cold “Warm" and “Cold" refer to the
state of the El Niño-Southern Oscillation
(ENSO). This factor takes three values in
the model, “Warm", +1 representing an El
Niño event; “Cold", �1, representing a La
Niña event or 0 for neither event.

Dakar “Dakar" refers to annual rainfall over Dakar,
Senegal.

Azores “Azores" refers to annual sea level pres-
sure (SLP) in the Azores given in millibars.

Iceland “Iceland" refers to annual SLP in Ice-
land given in millibars. The difference in
SLP between Iceland and the Azores (Ice-
land � Azores) represents the North At-
lantic oscillation.

5. COMPARING MODELS

To better examine hurricane activity as a count
process over the basin, we present results from three
different models, a time-series only model, a space-
time model without instantaneous coupling parame-
ters, and a full model with coupling parameters. The
full model given in (3) represents a version of TP-
STAR. The first two models are fit to a Poisson gen-
eralized linear model (GLM) with dispersion. To fit
the full model we try both a maximum Poisson likeli-
hood estimator (MPLE) and a Monte Carlo maximum
likelihood estimator (MCMLE).

The MPLE extends the GLM model by adding
neighborhood observations as covariates to the mod-
els. If the covariate matrix is of full rank, the MPLE
using the canonical link function always produces
a parameter estimate. If the model is shift invari-
ant with finite range, the parameter estimates of the
MPLE are asymptotically consistent with increasing
domains (Winkler 1995). However, even in the shift
invariant case, the MPLE is not necessarily efficient,
and does not provide standard error estimates. We
use the MCMLE method for consistent and efficient
parameter estimates with consistent parameter co-
variance estimates as described in Geyer (1994) and
used by Wu (1994). The MCMLE method was ex-
tended by Jagger (2000) to handle the autoregres-
sive coupling in the TPSTAR model.

The MCMLE method has several problems. For
one, it is computationally intensive as it uses a Markov
Chain Monte Carlo method for estimating the log
likelihood function. For another, the method fails to
converge, unless the initial parameter estimates are
close to the actual parameter values. Though the
MPLE is biased in our case, the convergence prob-
lem is somewhat alleviated by using the MPLE for
initial parameter estimates.

For the time-series model, we analyzed annual
hurricane counts over the entire region S using Pois-
son GLM with dispersion as is used on U.S. hurricane
activity in Elsner and Bossak (2001). The parame-
ter estimates and their standard errors are shown
in Table 1. We note that the time-series model is
somewhat under dispersed. Dakar rainfall, Azores
pressure, and the warm phase of the El Niño are sig-
nificant at � = :05, but the autoregressive coefficient
is not.

For the spatial-time series model, we modified the
first model by dividing the region into 6� by 6� grid
boxes and added the latitude and longitude offsets.
Using a Poisson GLM model, We find that all the
factors including the autoregressive parameter are
significant at � = :05. We also note that the variance
estimates using this model are three times smaller



Table 1: Parameter estimates and statistics for the
time series model. The dispersion parameter esti-
mate is 0.924; residual deviance is 87.0 with 87 de-
grees of freedom. There are 94 observations, withP93

t=0Ht+1900 = 424.

Value Std. Err. t-value units
Intercept 198.475 68.996 2.88


1c 0.037 0.0194 1.88
Cold 0.193 0.108 1.78

Warm �0.302 0.126 �2.38
Dakar 0.594 0.250 2.40 yr/m

Azores �0.149 0.049 �3.05 mb�1

Iceland �0.046 0.027 �1.71 mb�1

than those for the time-series only.
The conclusions about the parameters and their

variances are not entirely valid, as the GLM assumes
no instantaneous coupling, i.e. the conditional distri-
bution given the past is independent for each site.
This assumption does not hold because our data
consist of hurricanes that pass between adjacent grid
boxes creating correlations in annual counts between
adjacent boxes. This suggests adding spatial struc-
ture to the model in the form of coupling parameters.

For the final model, we added east-west, and
north-south coupling. Model estimates are derived
using the results of a pseudo likelihood estimator as
inputs to the MCML estimator. The MCML estima-
tor is then run iteratively with 1000 samples at each
stage. Table 2 shows the final MCML estimate af-
ter four iterations. We stopped after four iterations,
since the changes between iteration two and three
and three and four were similar, with the root mean
square change of :2 for the t statistic.

Results from the full TPSTAR model indicate all
couplings are positive and significant. Again, the
lag-one coupling, which was not significant in the
time-series model, is significant in the space-time
model. This is a new finding that provides evidence
for hurricane path persistence over successive years.
Locations that were threatened by a hurricane one
year are more likely to be threatened again in the
next year. As with the second model, the climate
predictors are significant.

Estimates from the MCML estimator appear to be
reasonable. The model takes considers both spatial
and temporal couplings. For example, the parameter
estimates are the same sign, but smaller in the final
model with instantaneous couplings as compared to
the Poisson GLM without instantaneous couplings,

Table 2: Parameter estimates and statistics for the
truncated Poisson space-time autoregressive (TP-
STAR) model.

MPLE MCML Estimator
Value Value Std. Err. t-value


0h 0.389 0.358 0.014 24.90

0v 0.250 0.287 0.017 16.75

1c -0.002 0.079 0.020 4.03

intercept 57.412 148.537 18.473 8.04
lat1 �0.072 �0.010 0.038 �0.27
lat2 0.012 0.023 0.017 1.35
lat3 0.039 0.022 0.013 1.74
lat4 0.044 0.007 0.011 0.60
lat5 �0.012 �0.047 0.013 �3.62

long1 �0.197 �0.116 0.076 �1.53
long2 �0.056 �0.003 0.035 �0.09
long3 �0.047 �0.009 0.020 �0.45
long4 �0.042 �0.009 0.013 �0.68
long5 �0.024 �0.013 0.010 �1.32
long6 �0.024 �0.032 0.009 �3.73
long7 �0.018 �0.039 0.008 �4.77
long8 �0.037 �0.055 0.008 �6.79
Warm �0.124 �0.230 0.038 �6.02

Cold 0.072 0.192 0.027 7.15
Dakar 0.368 0.768 0.068 11.31

Azores �0.042 �0.120 0.013 �9.14
Iceland �0.015 �0.028 0.007 �3.96



or the time-series model. This makes sense, since
a positive coupling causes the expected value of any
statistic to be more sensitive to changes in the pre-
dictor value than would be expected in the absence
of the coupling. The parameters and the estimated
standard errors from the modified MCML estimator
are smaller than those obtained with the first two
models. This reduction in standard error might be
real owing to the addition of instantaneous coupling
and offsets, but it is more likely an artifact of the ap-
parent increase in total hurricane counts from 435 in
the time series model to 1676 in the TPSTAR model.

6. MODEL SELECTION

The backward elimination procedure is applied
to the TPSTAR model to arrive at a final model of
the spatial/temporal variations in seasonal hurricane
This procedure makes use of the estimated changes
in the Schwartz’s Bayesian Information Criteria (SBC)
and the Akaike Information Criteria (AIC) to deter-
mine which factors to remove from the model. We
use Wald’s statistic to estimate the difference in AIC
and SBC between models. We minimize the AIC
to find the model with the smallest predictive error,
whereas we minimize the SBC to find a consistent
model (Brockwell 1991). Applying backward elimi-
nation using AIC we kept all the factors in the model
whereas using SBC we kept all but the latitude factor,
at � = :05. Since we are using the model primarily
for forecasting, we kept the latitude factor in the full
model.

7. MODEL FIT ISSUES AND A HINDCAST

7.1 Strong Couplings

Because of the strong couplings, we needed to
modify the parameter estimator. We found that some
of the simulations at each time period contained large
predicted values for hurricane activity. Thus, we were
forced to remove simulations in the case that any
cell contained the maximum value, M = 10, of the
right truncated Poisson distribution. The restriction is
reasonable since the maximum observed number of
hurricanes for any region during any year at any of the
three regions size is four. The restriction biases the
estimator in that the parameters are estimated for the
spatial distribution conditioned on the maximum at
any location being less than ten. This restriction will
decrease the observed Fisher Information, which will
tend to inflate the values of the estimated standard
error.

7.2 Grid Size

As mentioned above, the spatial grid is a com-
promise between sample size and resolution. We
experimented with smaller grid boxes but found that
the MCML estimator did not converge. In these case
we lack accurate information for estimating the cou-
pling parameters. The 6� by 6� model converged,
and we did not need to remove any observations, but
the estimator rejected some of the samples at each
stage. Using a larger neighborhood might allow us
to use smaller grid boxes.

We experimented with larger spatial neighbor-
hoods by adding the current period’s four diagonal
neighbor sites using a single parameter to the model.
These sites are the NE, SE, SW and NW neighbor
regions, with parameter 
0d (the diagonal term). We
have the same model described by Eq. 1, with Eq. 2
changed to

log(�t;ij) =

Cij(t) +


0h(Ht;i+1;j +Ht;i�1;j) +


0v(Ht;i;j+1 +Ht;i;j�1) +


0d(Ht;i+1;j+1 +Ht;i�1;j+1 +Ht;i�1;j�1 +Ht;i+1;j�1) +


1c(Ht�1;i;j)

and the local neighborhood of site (t; ij), h@(t;ij), is
the vector of nine response values.

We run the modified MCML estimator for several
iterations, using the previous values of the parame-
ter estimates from the full model in Table 2, and an
initial MPLE estimate for 
0d of 0.0 We estimate that

0d = 0:090; �
0d = 0:021; t = 4:3. Adding the di-
agonal parameter to the model significantly affects
only the estimates for 
0h and 
0v reducing them to
0.319 and 0.209 respectively, while increasing their
standard errors to 0.017 and 0.026, respectively. The
correlation matrix of the coupling parameters and the
intercept show that while the other terms have cor-
relations less than 0.07 with each other 
0d is signifi-
cantly correlated. This term is not only significant, but
improves the model. If this term is added both the es-
timated AIC and SBC are reduced by 17.2 and 10.9
respectively. Thus, future models should consider
both larger spatial and temporal neighborhoods.

There are concerns about increasing the size of
the neighborhood. If the new couplings are positive
the estimator may fail to converge. Because we have
more site values, the model will required additional
boundary values and parameters. One may reduce
the number of parameters by using combinations of
various canonical parameters. For example, the pa-
rameter 
0d is really the sum of two parameters one
for the NW-SE diagonal and another for the NE-SW
diagonal.
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Figure 3: Probabilistic hindcasts of hurricane activity
for the 1994 North Atlantic hurricane season. Gray
levels indicate the hindcast probability that a given
region will have H or more hurricanes.

7.3 Hindcast

The model can be used to forecast hurricane
activity when lagged values of the covariates are
included. At each stage of the MCML estimator,
we generate samples from the distribution of Xt

conditioned on fXs : s < tg using the obser-
vations fXt�1; : : :Xt�pg, the covariates at time t,
zk(t); k = 1 : : : P the model parameters and esti-
mated boundary values. For our application we used
the full model parameters given in Table 2, so as to
have the smallest prediction error. Also, we estimate
the boundary values using the mean for each cell.

As a single test case, we generate 103 sample
forecasts of hurricane activity for 1994 in each 6� by
6� region of grid S using the 1994 values of the five
global covariates. Hurricane activity during 1994,
which was below the long-term average, is not in-
cluded at any phase of model development. The
spatial distribution and intensity of hindcast values
are plotted in Fig. 3.

Results are summarized using boxplots of the
predicted probability as a function of actual occur-
rence as shown in Fig. 4. Seven grid boxes were af-
fected by hurricanes during 1994. The average hind-
cast probability over those sites is 0.66 with a median
value of 0.59. This compares with an average and
median probability of 0.43 and 0.41, respectively for
the 33 sites not affected by hurricanes during 1994.
This represents an RMSE error of .2086 as compared
to 0.2322 for climatology, a 10 % improvement.

Overall, this single case study supports the con-
tention that the TPSTAR model, or similar spatial
count models, might be useful tools in predicting re-
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Figure 4: Hindcast probability versus actual occur-
rence for 1994. The probabilities are generated from
the TPSTAR model.

gional hurricane activity over the North Atlantic basin.

9. SUMMARY AND CONCLUSIONS

We introduce and apply a space-time count pro-
cess model to North Atlantic hurricane activity. The
model uses the best-track data consisting of histori-
cal hurricane positions and intensities together with
climate variables to determine local space-time coef-
ficients of a truncated Poisson process. The model,
referred to as a truncated Poisson space-time au-
toregressive (or TPSTAR) model, is motivated by
first examining a time-series model for the entire do-
main. Then a Poisson generalized linear model is
considered that uses grids boxes within the domain
and adds offset factors for latitude and longitude. A
natural extension is then made that includes instan-
taneous local and autoregressive coupling between
the grids. A final version of the model is found by
backward selection of the predictors based on val-
ues of SBC and AIC. A single hindcast is performed
on the 1994 hurricane season using a model hav-
ing five nearest neighbors and statistically significant
couplings. The parameters in the TPSTAR model are
estimated using MPLE. The model showed promise
as a potential forecast tool.

Several conclusions concerning the application of
the TPSTAR model to seasonal North Atlantic hurri-
cane activity are reached:

� Seasonal hurricane activity over the North At-
lantic basin can be modeled as a space-time
Poisson process.

� There appears to be some temporal autocorre-
lation in hurricane activity between seasons.



� Dividing the region into grid boxes and adding
coupling increases the significance of the global
predictors.

� Increasing the neighborhood size can improve
the model at the cost of estimating additional
parameters and boundary values.

� From the MCML estimates t-tests can be per-
formed to determine if the instantaneous cou-
plings are significant. If they are not we can
use the simpler Poisson GLM model.

� Grid size is important to the model formulation.
The spatial parameters 
0v and 
0h do not scale
with changing grid size, and the MCML estima-
tor may fail to converge for small grid size.

� A hindcast case study provides no evidence
against the hypothesis that the TPSTAR mod-
eling procedure can be useful as a climate pre-
diction tool.
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