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1. INTRODUCTION 
 Agriculture is Florida’s most weather-

sensitive sector.  There is a well-documented interest 
by growers and ranchers in Florida for advance 
information on the climate of the upcoming 
agricultural season.  Seasonal forecasts offer the 
potential to modify outcomes and risks, and hence, 
impact decisions. 

Crop models are frequently used to evaluate 
the ability of climate forecasts in guiding crop 
management practices. There are three main 
approaches for creating climate scenarios appropriate 
for driving site-based crop simulation models.  The 
first approach involves using site historical data, 
sometimes categorized into classes statistically (i.e. 
precipitation terciles) or using ENSO phases (i.e. 
Phillips et al., 1998; Jones et al., 2000; Mavromatis et 
al., 2001).  The second approach involves training a 
weather generator with observed data and global 
climate model anomalies to create perturbations 
(Rajagopalan and Lall, 1999; Wilks, 1999).  Finally, 
output from a global or regional climate model can be 
used as direct input into a crop model (Mearns et al., 
1999).  Until now, agricultural applications of climate 
forecasts have used statistical analysis of historical 
climate and ENSO information to arrive at climate 
scenarios for adaptive management (Jagtap et al., 
2001a; Mavromatis et al., 2001; Jones et al., 2000; 
Ferreyra et al., 2000; Podesta et al., 1999; Messina et 
al., 1999; Phillips et al., 1998; Meinke et al., 1996).   

Weather generators have found limited use 
in previous studies due to several inherent limitations. 
These methods cannot be used for locations for which 
there are no historical data (Dubrovsky et al., 2000) or 
if the length of the historical data series is not long 
enough. The interaction of climate change with 
climate variability, ultimately, will limit utility of weather 
generator or historical analogue based approaches. 
Another limitation of using generated data lies in the 
fact that although the means of crop yields may be 
produced, the variances and frequencies of extreme 
events are not always captured by the generated data 
(Mearns et al., 1996, 1997).   

Optimization studies in the southeast United 
States (Jones et al., 2000) show overwhelmingly that 
eleven to fifteen times more profit can be derived 
using perfect forecasts of the next season’s daily 
weather compared to a precipitation-based 
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categorical forecast and forecast conditioned on 
ENSO phase, respectively.  However, the availability 
and accuracy of the next seasons daily weather 
forecasts is a major challenge. The skill levels of 
global and regional climate models, which are used to 
generate these forecasts, have been shown to be less 
accurate than statistical methods.  Although the tools 
and ability to model and predict seasonal climates 
have been improving over the years, previous models 
have shown deficiencies in many aspects. These 
deficiencies include: a lack of spatial and temporal 
accuracy, poor reliability of global simulated 
atmospheric circulation patterns, low magnitude of 
correlation between the circulation and surface 
weather, and a lack of reliability of surface weather 
simulated by the regional model.  These models often 
have coarse resolution and do not take into account 
important local conditions, such as coastal or 
mountainous features.  All of these factors can affect 
the use to which climate information can be put and 
the level of generalization that can be assumed and 
subsequently, the response of users and their 
continued trust in such information (Jagtap et al., 
2001a). Nevertheless, these global and regional 
models take into consideration large-scale 
phenomena and integrate them with local topographic 
and land use characteristics, and thus are expected to 
provide somewhat accurate site- and year-specific 
climate forecasts.   

Future improvements in climate prediction 
science and forecast products are expected to come 
largely through larger ensemble datasets and 
improved dynamic climate models whose output can 
be used directly for agricultural applications (Phillips 
et al., 1998; Cane 2001; Druyan et al., 2001;Goddard 
et al., 2001).  Therefore, even though their skill levels 
are still being investigated, it may be beneficial to 
couple agricultural models with the regional climate 
models for producing relevant information for use by 
agricultural decision makers.  

The appropriate methodology for linking 
climate prediction and crop simulation models has 
been identified as a critical knowledge gap.  The goal 
of this work was to examine these issues through a 
case study involving the integration of the Florida 
State University regional nested climate model 
(Cocke and LaRow, 2000) with a maize model in the 
widely used DSSAT family of crop models.  The 
growing seasons during 1998 and 1999 were chosen 
because they represent significantly different climate 
regimes: 1998 was an El Niño year and 1999 was a 
La Niña year.   Descriptions of the climate models and 
crop models will be summarized in Sections 2 and 3. 
Preliminary results from this study will be discussed in 
Section 4. 
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2.  NESTED REGIONAL SPECTRAL MODEL 

The climate model used in this study is a 
regional spectral model embedded within a global 
coupled ocean-atmosphere spectral model. The 
regional model is a re-locatable spectral perturbation 
model that can be run at any horizontal resolution and 
uses base fields and sea surface temperatures 
derived from the coupled global model as boundary 
conditions.  The vertical structure of the global model 
consists of 14 unevenly spaced vertical levels and it is 
coupled to the Max Planck global ocean model 
(HOPE).  Details of these models and the model 
physics are available in Cocke and LaRow (2000). 

Two six-month experiments were conducted 
for the growing seasons (March-August) of 1998 and 
1999.  A ten-member ensemble was constructed for 
each year to assess uncertainty in initial conditions 
and variability of forecasts in space and time.  Each 
ensemble member was six months  (184 d) long with 
atmospheric initial conditions chosen from 
consecutive start dates centered on 1 March, 
obtained from the European Centre for Medium-
Range Weather Forecasts (ECMWF).  The coupled 
model was initialized with a spun-up ocean state [see 
Cocke and LaRow (2000) for more details].  The 
global model was run on a coarse grid spacing of 
~200 km and the regional model on a fine scale 
resolution of ~20 km.  

Weather data in a grid cell containing 
Quincy, Florida  (30.6°N, 84.55°W) were extracted 
from both model sets of ensembles for statistical 
analysis and crop model runs. Observed daily 
maximum and minimum temperatures and 
precipitation data were also collected for Quincy from 
the Florida Climate Center from 1968-1999.  Missing 
daily radiation data at Quincy were replaced by daily 
radiation data from Tallahassee, Florida, located 
50km to the southeast.  Results from the regional and 
global models were compared to the observed 
weather at Quincy in 1998 and 1999 to evaluate how 
well these models reproduced the observed weather. 
The regional model results were also compared with 
those from the driving global model to assess the 
extent to which the nesting modified, and possibly 
improved, the resulting forecasts. Temperature 
(maximum and minimum), radiation, and total rainfall 
averaged for the March-August months for ten 
ensembles of the global and regional models were 
compared with observed weather data. 

3. CROP MODEL 

The CERES-Maize simulation model (Ritchie 
et al., 1998) was used to delineate effects of various 
forecasts on simulated maize yield.  The CERES-
Maize model is a dynamic process based crop model 
that simulates how corn plants respond to soil, 
weather, water stress, and management.  Using site-
specific input data, it calculates development, growth, 
and partitioning processes on a daily basis, starting at 
planting and ending when harvest maturity is 

predicted.  As a result, the response of the corn plant 
to different soils, weather, and management 
conditions can be predicted.  The model is well suited 
to addressing the impacts of weather/climate 
variability (Mavromatis and Jones, 1998; Mearns et 
al., 1999), and on the choice of management 
decisions (Jones et al., 2000; Hansen et al., 2001). 
4.  DISCUSSION 

4.1 Global and Regional Model weather in 1998 
and 1999 

 
Temperatures forecast by the global and 

regional models for Quincy were similar in 1998, but 
rainfall was considerably different (Figure 1).  The 
regional model rainfall forecast in 1998 was 
comparable to both categorical ENSO and local 
climatology, but it was over-predicted at Quincy by a 
total of 300 mm for the period  April-June and under-
predicted by about 160 mm for the period July-
August.  Thus, in 1998, the bias between observed 
rainfall and forecast rainfall were of the same order of 
the observed categorical or climatological values.  Not 
surprisingly, there were highly significant differences 
between observed and predicted monthly values with 
the regional and global models in 1998.  The regional 
model showed higher skill in predicting rainfall at 
Quincy in 1999 (Figure 2).   

Early season maximum temperatures were 
colder than observations, local climatology, and the 
average El Niño year for the early part of the season 
(Figure 1) but slightly warmer than observed in July 
and August of 1998.  Minimum temperatures also 
exhibit a slight cold bias in both the global and 
regional models in 1998 (Figure 1).  This cold bias is 
higher in the global model simulations than the 
regional model. This bias was also noted by Cocke 
and LaRow (2000) in their study of boreal winters in 
North America.  They suggest that these biases (on 
the order of 3oC) may be reduced with the inclusion of 
a better land surface parameterization scheme. 
Temperatures in 1999 (Figure 2) are observed to 
have similar biases as noted in 1998, although the 
magnitude of the bias is less, on average, for both 
models.  Monthly average solar radiation values at 
Quincy in both 1998 and 1999 seasons were over-
predicted by 8-10 MJ m-2 d-1 from June-August (Figs. 
1, 2), which coincides with the grain filling period and 
was about 38-50% higher than the seasonal average 
radiation of 21 MJ m-2 d-1.   

Due to the chaotic behavior of the 
atmospheric circulation patterns, forecasts based on 
climate models may have considerable uncertainty. 
The global model generally produced less 
precipitation than the regional model in all months in 
both 1998 and 1999.  The difference between the 
regional and global rainfall amounts at Quincy was 
especially large over the forecast period (+260% in 
1998 and +360% in 1999). These differences may be 
related to how rainfall events are simulated by each of 
these two models and by their proximity to coastal 
areas. Note that the case study region is not 



characterized by significant local topographic 
variability, so these differences are not likely due to 
the local topographical forcing.  This result shows 
that, even with the same large scale driving fields, a 
global model and nested regional model can show 
distinctly different spatial rainfall pattern on the sub-
regional scale, particularly during the crop-growing 
season.   
 

4.2 Crop Results 

In 1998, none of the forecasts (measured by 
either mean or most likely yield) predicted the 1998 
yield of 7.2 Mg ha-1 correctly (Figure 3, Table 1).  The 
yield simulated using 1998 weather was significantly 
lower (Table 1, p=0.05) than yields produced by all 
forecasts.  The differences in maize yield forecasts 
arise because of the non-linearity of crop responses 
to weather.  Expected yields from 30-yrs of historic 
weather data ranged from 6.12 to 11.89 Mg ha-1 with 
a mean of 9.90 Mg ha-1 and standard error (s.e.) of 
0.25 Mg ha-1.  The range of yields estimated in El 
Niño years was smaller and ranged from 9.10 to 
11.84 with a mean of 10.31 and s.e. of 0.37 Mg ha-1.  
The 1998 yield of 7.2 Mg ha-1 was outside the range 
of yields expected using El Niño forecasts. 
Climatologically and using regional model forecasts, 
the probability of such a low yield was about once 
every 10 years or 10%.  Prediction error  (PE) 
(measured as the difference between the expected 
yield using a forecast and yield in 1998 using the 
same forecast specific management) varied from a 
low of +2.7 Mg ha-1 using climatological forecast to a 
high of +3.80 Mg ha-1 using regional model based 
forecasts (Table 1).    

Weather patterns during 1998 were unique.  
Worldwide, 1998 was rated as the strongest El Niño 
event of the century.  Although El Niño events 
typically bring plentiful winter rains to North Florida, 
the early summer months (May and June) are often 
quite dry following a warm event; 1998 was no 
exception.  These extreme dry conditions combined 
with 2-5°C higher than normal maximum and 
minimum temperatures during the most water 
sensitive stages of corn growth reduced yield 
considerably.  From yield distributions in Figure 3, it 
can be seen that the simulated 1998 yield was one of 
the lowest (probability <10%).  In 1998, the average 
statewide corn yield was 3.9 Mg ha-1 or 23% less than 
1997 or 1999 yields.  Statewide yield was 
considerably lower than our simulation because we 
did not account for the reality of inadequate use of 
fertilization, untimely management practices, weeds, 
and insect pests.  Although the CERES-Maize or 
similar models enable us to represent and predict the 
interactive effects of climate, soil, varieties and 
management, we will never be able to understand 
and predict all mechanisms. The results reported here 
are to be taken as general indicators rather than 
precise values.   

 

The 1999 cropping season was a La Niña 
year with normal rainfall and resulted in a simulated 
yield considerably higher (13.94 Mg ha-1) than yields 
predicted using 30-yrs of climatological or 6-yrs of La 
Niña based forecasts (Table 1).  The regional model-
based forecast accurately predicted the observed 
1999 yield (Figure 3).  Predictions based on 
climatology, ENSO and rainfall categories in 1998 and 
1999 exhibited little skill, while the regional model 
forecast the 1999 yields with more accuracy.  
 
5.    CONCLUSIONS 
 

We face many challenges as we seek to 
enhance the exciting prospect of bringing scientific 
seasonal climate forecasts to bear on agricultural 
systems.  A skillful seasonal weather forecast 
provides an opportunity for growers to better tailor 
crop management decisions before the season. 
However, the highest benefit and success rate 
generally comes from the spatio-temporal accuracy of 
the weather forecast itself.  Presently, there is a 
capability to forecast synoptic weather (daily rainfall, 
temperatures and global solar radiation) specific to 
location/region by regional models nested within 
global models driven by the present state of the 
oceans.  In their present form, most forecast products 
lack the spatial, temporal and element of specificity 
that users seek for specific decision making needs, 
however, with time this problem will be overcome. 
This development is of particular importance for the 
application of seasonal climate forecasting in 
targeting and presenting the information within a time 
frame consistent with operational requirements and at 
a spatial scale appropriate to users’ needs.   

Results from this preliminary study indicate 
that the regional climate model exhibits some skill in 
the prediction of crop yields.  More work needs to be 
done to evaluate the skill of the model and to 
determine if the model has similar skill during other 
seasons, different locations, or different crop types.  
Improvements to the model physics are currently 
underway and the newer version of the model will be 
tested in the near future.  More details of these results 
are available in Jagtap et al. (2001b).  
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Figure 1.  Monthly mean maximum and minimum temperatures (oC), monthly total precipitation (mm) and monthly 

mean solar radiation (MJ m-2 d-1) for 1998 from the global and regional models.  Also shown are values 
corresponding to climatology (triangle), observations (circle) and average El  Niño  years.  Figure reproduced from 
Jagtap et al. (2001b). 

 
 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.  Monthly mean maximum and minimum temperatures (oC), monthly total precipitation (mm) and monthly 

mean solar radiation (MJ m-2 d-1) for 1999 from the global and regional models.  Also shown are values 
corresponding to climatology (triangle), observations (circle) and average La Niña years.  Figure reproduced from 
Jagtap et al. (2001b). 
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Figure 3.   Relative frequency of maize yields forecast at Quincy, Florida, using different weather forecasting 

techniques and the current production practices for the (a) 1998 and (b) 1999 seasons. Yields were categorized 
into yield classes to create relative percentage values. More likely yields are indicated by higher percentages on 
the graphs.   Figure reproduced from Jagtap et al. (2001b). 

 
 
 

                                                                                                                               

Mean Standard Prediction Expected
Forecast type n Yield error Mean Error Minimum Maximum yield*

1998 weather 1 7.20 b
Climatology 30 9.90 a 0.25 2.70 6.12 11.89 10-12
El Niño 7 10.31 a 0.37 3.11 9.10 11.84 8-10
Regional Model 10 11.00 a 0.99 3.80 4.66 14.17 12-14

1999 weather 1 13.94 b
Climatology 30 9.90 a 0.25 -4.04 6.12 11.89 10-12
La Niña 6 9.96 a 0.61 -3.98 7.44 11.89 10-12
Regional Model 10 10.77 ab 1.26 -3.17 0.27 14.07 12-14

Estimated 30 11.53 a 0.27
Regional 10 13.20 a 0.42

---------------------------------------Mg/ha-------------------------------------------------

+    Mean yields with no common letters differ significantly at the 0.05 probability level
*    These values indicate lower and upper class limits
n     Number of years of weather data or ensembles

Table 1. Maize yield forecasted in 1998 and 1999 using different forecasting techniques and 
current management practices. 
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