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1. Introduction 
 
Model Output Statistics (MOS) have been used to derive 
forecasts of surface weather parameters from numerical 
weather prediction (NWP) models for over 30 years.  
Following the pioneering work of Glahn and Lowry (1972), 
the MOS technique determines relationships between 
explicit NWP model data and weather parameters needed 
to produce a weather forecast.  Climatological data, recent 
observations and other data external to the NWP model 
are also often used in deriving the relationships. In most 
circumstances, the relationships are linear, with 
multivariate linear regression being the most common 
approach used to generate the relationships.  Variants on 
the approach include the use of logistic regression (Glahn 
et al., 1991) when predicting binary parameters (e.g. 
occurrence of precipitation) and generalized additive 
models (Vislocky and Fritch, 1995a). 
 
During the early era of NWP, the use of MOS was 
essential in producing quantitatively useful guidance of the 
near-surface weather from the models.  Direct extraction of 
data from the models typically yielded large discrepancies 
between the forecast and observed surface weather.  
There were several reasons for this. First, the models had 
relatively poor horizontal and vertical resolution, and thus 
did not explicitly produce forecasts sufficiently near at the 
location of interest.  Second, the model’s physics generally 
were insufficient to accurately simulate the weather 
immediately near the earth’s surface where physics plays a 
paramount role in determining the weather.  Third, some 
parameters that are important components of a weather 
forecast were not available directly from the NWP model 
output.  For example, early NWP models did not include 
explicit ice physics and thus could not predict the 
occurrence of snow or freezing rain, neither could they 
explicitly predict the occurrence of thunder. 
 

Today, despite tremendous advances in the quality of 
NWP models, the use of MOS continues to play a 
paramount role in the production of forecast guidance.  
The National Weather Service currently publishes MOS 
forecasts based on the NGM model and two versions of 
MOS based on each of the AVN and MRF runs of the 
global spectral model.  It is perceived that MOS 
forecasts continue to be superior to those generated by 
direct extraction from NWP data (see e.g. 
http://205.156.54.206/tdl/synop/results.htm  for current 
NWS statistics), although no recent comprehensive 
study of such is known. 
 
It is general practice that at least two years of model 
data and observations be used to derive stable MOS 
relationships (Jacks et al., 1990; Vislocky and Fritch 
1995b). The length of the period depends on the ability 
to find meaningful relationships between the predictors 
and predictands.  Noise in the data introduced by errors 
in the NWP model’s forecasts and errors in observations 
can adversely affect the ability to find such relationships 
and thus the length of the required training period. The 
degree of noise also is dependent on location, season 
and forecast parameter with binary parameters (e.g. 
occurrence of precipitation) having especially noisy 
datasets. 
 
For strict derivation and application of MOS, the NWP 
model must be static during both the training period as 
well as during the subsequent period that the MOS 
relationships are applied.  Otherwise, a paradox can 
arise in which improvements in the model lead to worse 
MOS forecasts.  For example, if a MOS relationship acts 
to remove a systematic bias found in the training set of 
NWP data, then subsequent improvements that reduce 
the NWP model’s bias will result in a biased MOS 
forecast until the MOS relationships can be rederived. 
 
Today, NWP models are highly dynamic, with the major 
modeling centers making improvements in physics, 
numerics and resolution on a near continuous basis.  
Thus, strict application of the traditional MOS technique 
can be questionable.  One approach for overcoming the 
ever-changing model base is to use of the so-called 
perfect-prog method.  In this technique, the MOS 
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relationships are based not on explicit NWP model data but 
on observations of the variables that a NWP model can 
predict.  The relationships are then applied to NWP 
forecasts under the assumption that the model “perfectly” 
predicts the atmosphere.  As the model is improved, and 
its predictions become more perfect, then the perfect-prog 
MOS forecasts are also improved.  However, the technique 
is limited to use only those predictors for which 
observations are available.  Thus, many complex model 
variables (e.g. cloud water concentration, surface fluxes, 
vertical velocity) are not available for use in perfect-prog 
MOS even though they may contain significant insight to a 
MOS forecast. 
 
Recently, Mao et al. (1999) used a new technique to 
overcome this problem.  Instead of relying on two years of 
data to construct the MOS relationships, they attempted to 
derive linear regression relationships using only recent (2-4 
weeks) model data and observations.  Their regressions 
were updated daily thus allowing the system to adjust to 
changes in the base model automatically.  In their specific 
application, they used a version of the regional spectral 
model (RSM) to drive MOS temperature forecasts and 
found skill comparable (but slightly less) than forecasts 
from the National Weather Services NGM-based MOS 
forecasts.  It is unclear whether the difference is skill was 
due to differences in the underlying quality of RSM and 
NGM models, or to limitations in their technique.  However, 
their specific method for determining the regression 
equations and their technique for extracting maximum and 
minimum temperature forecasts from time series of 
temperature forecasts were both sub-optimal and may 
have played a role in the comparison results. 
 
Part of the reason that Mao et al. found encouraging results 
in their short training period MOS application stems from the 
fact that NWP models have improved considerably over the 
years.  This has led to a considerable reduction in the 
variance (or “noise”) between model forecasts and 
observations.  With skillful predictions from the NWP model, 
it is much easier to find useful relationships between the 
model and observations.  Thus, the use of at least several 
years of data to derive the MOS relationships may no longer 
be necessary.  However, Mao et al.’s experiments were 
limited to short-range temperature forecasting and it 
remains unclear if similar results would be obtained on other 
variables or longer forecast lead times where considerably 
more variance between the forecasts and observations 
occurs.  
 
Other than overcoming the issue of a changeable NWP 
model environment, a second potential advantage to a 
MOS forecast system that only uses recent data to derive 
the statistical relationships, is that the resulting 
relationships may be more applicable to the ongoing 
weather regime.  In traditional MOS, the relationships are 
derived from a much broader set of data that presumably 
spans a wide range of weather regimes resulting in 
relationships that are more applicable to the climatological 
norm.  For example, during drought conditions, it is 
conceivable that the MOS forecasts derived using just the 
recent (drought) data will be more skillful than MOS 

forecasts based on average conditions.  Conversely, 
forecasts derived during one weather regime may yield 
less skillful results during changes in the regime and so 
which approach yields more skillful forecasts remains to 
be seen. 
 
 
2.   Dynamic-MOS 
 
Experiments have been conducted on extending the 
work of Mao et al. by developing an operational forecast 
system referred to as dynamic-MOS.  The basic concept 
is similar to Mao et al.’s in which MOS relationships are 
derived and continuously updated using just recent NWP 
model data. In dynamic-MOS, forecasts are made for a 
broad set of variables including temperature, dewpoint, 
wind, clouds, probability of precipitation, precipitation 
type and thunder. For the initial experiments, a longer 
training period (~12 weeks) was used compared than 
Mao et al. for two reasons.  First, the system is 
forecasting some binary variables (e.g. probability of 
precipitation), which inherently will contain significant 
noise.  Second, the system is attempting to make long-
range forecasts and thus noise will be introduced as the 
model forecasts diverge from reality. No attempt has 
been made to study changes in dynamic-MOS’s skill as 
a function of training period length.   
 
New forecasts are created by the system upon receipt of 
new NWP data while the dynamic-MOS relationships are 
updated weekly using a multivariate linear-regression 
technique.   Available computer time was the only 
limitation to the frequency of the dynamic-MOS 
relationship update cycle.  Forecasts were produced for 
several thousand sites worldwide and forecasts were 
generated using each of NCEP’s ETA, AVN and MRF 
models.  The period covered by each dynamic-MOS 
forecast was determined by the length of base model’s 
published data. 
 
In general, we have found results similar to that reported 
by Mao et al. with the skill of dynamic-MOS being similar 
or slightly less than the skill of comparable NWS MOS 
products (i.e. the AVN and MRF MOS products; no NWS 
ETA MOS product is available).  However, climatology 
and other semi-static predictors often used in NWS MOS 
products were purposely excluded1 in dynamic-MOS.  
This resulted in a relative decrease in the skill of the 
dynamic-MOS system relative to NWS MOS, particularly 
for the longer forecast times. Since in many regards our 
dynamic-MOS system and results are similar to that of 
Mao et al., we will not focus on many details of its 
implementation and results here. 
 
 
3.  A Pitfall of Dynamic-MOS 
 

                                                 
1 Climatology was considered in a post-processing of the 
Dynamic-MOS forecasts.  The Dynamic-MOS system 
discussed here only refers the forecasts prior to the 
application of the post-processing. 



A key element of the dynamic-MOS system is the selection 
of a multivariate regression equation that will be used for 
the MOS forecasts.  Depending upon the exact number of 
predictors considered, millions of different regression 
equations are possible.  The adjusted R-squared metric 
(e.g. Devore, 1982) is a common means of identifying 
which regression is most likely to yield skillful forecasts.  In 
dynamic-MOS, a combination of multiple regression 
identification techniques (e.g. forward substitution, back 
substitution, pairwise substitution, etc.), matrix 
conditioning, condition numbers and adjusted R-squared 
are used to identify an ideal regression.  Despite the care 
used to ensure that high-quality regression is selected, 
occasionally a bad regression is used in the forecast 
system.  Here, a bad regression is loosely defined as one 
that results in a forecast with unacceptably large error, 
possibly even physically unrealistic values.  Even 
infrequent occurrences of forecasts based on bad 
regressions can have significant impact on mean forecast 
skill statistics of the dynamic-MOS system. The NWS 
avoids the use of bad regression in their operational MOS 
products by manually screening all selected regression 
solutions prior to their application.  However, in an 
automated and continuously updated Dynamic-MOS 
system, such manual scrutiny is not practical. 

 
By far the most common cause of bad regressions in our 
dynamic-MOS system is the use of extrapolated predictors.  
When a relatively short training period is used to derive the 
regression equations, it is possible that the range of values 
of some predictor in the training set is much less than 
normally seen.  If such a regressor is included in the final 
regression selected, then a bad regression can result.  

Application of the bad regression with a regressor value 
far outside the range witnessed during training (but still 
normal) can yield a bad forecast.  This is referred to as 
regressor extrapolation. 
 
A simple solution to the regressor extrapolation problem 
is to store the range of regressor values used during the 
derivation of the regression equation, and then apply the 
regression only when the forecast values of each 
regressor fall within a tolerance of the values seen 
during derivation.  This technique certainly avoids the 
use of extrapolated regressors but does result in a 
missing forecast, which may be equally unsatisfying.  
However, if a backup regression equation were available 
that does not include an extrapolated regressor, then a 
missing forecasts could be avoided 
 
 
4. Ensemble Dynamic-MOS. 
 
Since one may not know beforehand which term of a 
regression might be subject to regressor extrapolation, 
then at least as many backup regressions as terms in 
the original regression must be stored in order to avoid a 
missing forecast.  Since the possibility exists that more 
than one regressor in the original regression may have 
extrapolation, or that a regressor in the backup 
regression may also be subject to extrapolation, then a 
large number of alternative regression equations may be 
needed in order to avoid missing forecasts.   

 
In Dynamic-MOS, where 30 or more regressors are often 
considered during the derivation of each regression, and 
millions of combinations of those regressors are 
possible, it is likely that a sufficiently large set of suitable 
backup regressions can be identified.  For example, Fig. 
1 shows a typical set of contours of the adjusted R-
squared values of the best ten regressions as a function 
of the number of terms in the regression.  In this case, 
regressions with more than three terms have a relative 
uniform distribution of the adjusted R-squared values.  
This implies that most of the variance in the data is 
explained by the leading three terms and that the 
regression is over determined with many more predictors 
of similar skill available for selection.  There is little 
significant difference between the best regression and 
the second best regression and so on.   In fact, the 
identification of the best regression may not be 
meaningful as there is a large set of equally skillful 
regressions.  Therefore, as this case is typical, there 
usually are ample sets of backup regressions to select 
from. 
 
However, if a large set of backup regressions is 
computed and stored, then an alternative approach to 
quality control of the dynamic-MOS forecasts is possible.  
If a forecast based on each of the stored regression 
equation is computed, then an ensemble of Dynamic-
MOS forecasts results.  By applying suitable methods to 
the ensemble of forecasts, bad forecasts could be 
identified and removed from the ensemble and a final 
forecast constructed from the remaining members.  The 
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Fig. 1.  Contour plot of the adjusted R-sqaured as a 
function of the number of terms in the regression and 
the ascending ranked order of the regression skill. The 

contour interval is 0.05.   



technique has the potential of solving not only the 
extrapolated forecast problem (indirectly), but eliminating 
bad regressions  arising for other reasons (e.g. near 
colinearity in the training data).  It also has the potential for 
improving the skill of forecasts made in the absence of any 
bad regressions by application of ensemble technique. 
 
 
5. Experiments and Results.  
 
Experiments have been conducted on an ensemble 
Dynamic-MOS scheme based the NCEP ETA model.  For 
these experiments, an ensemble of regression equations 
that contained at least two different regressors in each 
equation were determined and stored for each of about 
1,500 forecast sites.  For each site, forecast lead-time and 
forecast variable, an ensemble of Dynamic-MOS forecasts 
was computed using each of the stored regression 
equations.  The simple median of the ensemble forecasts 
was then selected as the final forecast.  Distributions of 
forecast errors from the ensemble-median forecasts were 
compared to the error distributions associated with using 
thea single leading regression.  Statistics were compiled 
using one month of forecasts during the spring of 2000. 
 
Fig. 2 shows box plots of the normalized, absolute error 
distributions in the 24-hr temperature forecasts.  The 
distributions cover all sites and days in the experimental 
period.  Forecast errors were normalized using the local 
standard deviation to facilitate the combination of errors 
from sites with different climatologies.  Box plots are shown 
for the scheme using just the leading regression equation 
and for the ensemble scheme.  Box plots from forecasts 

generated by directly extracting the 2 m temperature 
from the ETA model and for climatology are also shown 
for comparison.   
 
These results show that the ensemble dynamic-MOS 
scheme produced the best temperature forecasts on 
average with a reduced median forecast error compared 
to using the single regression technique.  The ensemble 
scheme also reduced the occurrence of large-error 
forecasts somewhat. The very large (nearly 8 standard 
deviation error) remains in all of the forecast systems 
and is associated with a highly anomalous event that 
was poorly forecast by the ETA and is not the result of 
bad regressions.  The plot also shows that the use of 
dynamic-MOS continues to have a significant advantage 
in improving forecasts over direct model extraction. 
 
Fig. 3 and 4 show similar box plots but for forecasts of 
fractional cloudiness and wind speed respectively.  
These cases much more dramatically illustrate the 
potential gains in forecast skill and reduction in large 
forecast error than can be achieved through the use of a 
ensemble dynamic MOS approach.  In these cases, 
median forecast error was reduced by 20%-40% and the 
95th percentile largest forecast errors were reduced by 
almost half. 

 
 

 
6. Summary. 
 
A dynamic-MOS forecast system has been constructed 
similar in concept to that of Mao et al.  In dynamic-MOS, 
relationships between the model variables and the 
forecast parameters are determined using a 
considerable shorter period of time than traditionally 
used in deriving MOS relationships.  The relationships 
are continuously updating allowing the dynamic-MOS 
scheme to automatically adjust to changes in the 
underlying NWP model. The dynamic-MOS system has 
been used to produced forecasts for a broad set of 
forecast parameters and for thousands of sites around 

Fig. 2.  Box plots of the normalized error distribution 
of 24-hr temperature forecasts using (a) the leading 
regression equation, (b) the ensemble dynamic-
MOS approach, (c) direct model extraction of the 2-
m temperatures and (d) a climatology forecast.   
Distributions are shown in standard deviations.  The 
box plots show the median (center line of box), 25th

and 75th percentiles (outside edges of box), 5th and 
95th percentiles (wiskers) and extreme outliers 
(dots). 
 

Fig. 3.  As in Fig. 2 except for fractional cloudiness. 



the world.  It has been applied to the ETA, AVN and MRF 
models from NCEP.  Results of our dynamic-MOS 
experiments were similar to those reported by Mao et al., 
with comparable or slightly less skill in the dynamic-MOS 
forecasts when compared to similar products from the 
NWS. 
 
 An ensemble extension of the Dynamic-MOS scheme was 
proposed and tested.  In ensemble dynamic-MOS, a large 
set of regressions are computed and stored for each 
forecast parameter.  The regression set is then used to 
produce and ensemble of dynamic-MOS forecasts.  Some 
simple experiments of the technique using a month of  
forecasts from the ETA model showed that the ensemble 
technique can provide a significant improvement in the 
forecast skill when compared to the skill of the single best 
regression.  Although the technique was proposed as a 
quality-control mechanism for identifying and eliminating 
bad regressions, the results shown here indicate that the 
scheme has the ability to not only reduce the occurrence of 
large forecast errors, but also in improving the overall skill 
of the dynamic-MOS forecast system. 
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