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1.0 INTRODUCTION 
Numerous studies have shown the influence of 
soil moisture on the feedbacks between land-
surface and climate, which in turn affect the 
dynamics of the atmosphere boundary layer and 
have a direct relationship to weather and global 
climate (Shukla and Mintz, 1982).  Chang, et 
al., 1991 have shown the influence of spatial 
variations of soil moisture and vegetation on 
the development and intensity of severe storms, 
whereas Engman, 1997, has demonstrated the 
ability of soil moisture to influence surface 
moisture gradients, and to partition incoming 
radiative energy into sensible and latent heat.  
Better understanding of the processes involved 
in the forcing of, and responses to, Earth’s 
changing environment is needed in order to 
accurately assess, predict and evaluate the 
global hydrologic cycle and weather and 
climate change. In order for this to be 
accomplished, it is necessary to intimately 
understand the relationship of soil moisture to 
these phenomena on small and large-scales. 
Unfortunately, complicating these overall goals 
is our inability to completely observe large-
scale hydrologic land-surface interactions. 
Remote sensing enables us to estimate large-
scale soil moisture for the purpose of  modeling 
the two-way interaction between land and 
atmosphere, making it possible to understand 
the nature of global climate. This paper 
examines a multiple techniques used to retrieve 

land surface parameters using microwave 
remote sensing. In general, past studies (Li and 
Islam, 1999, Mattikalli et al., 1998; Laymon et 
al. 1999; Jackson et al. 1995 and Schmugge et 
al. 1988) have focused on either regression 
between observed remotely sensed observations 
and surface soil moisture or limited 
comparisons between aircraft/ satellite 
retrievals and in-situ observations. However, in 
general, field experiments gather limited data, 
and exhaustive comparisons are generally not 
possible. Therefore, in this paper we attempt to 
combine; a) observations from PALS, b) 
statistical regressions c) physically based 
forward modeling of the sensor and d) 
retrievals using combinations of b and c. The 
above has been accomplished in three 
vegetation regimes; low(<0.25 kg m-2 ), 
med(0.25-3.0 kg m-2), high( >3.0 kg m-2). The 
dataset used in this study is derived from the 
Southern Great Plains (SGP) 1999 experiment. 
This wide spectrum of land surface conditions 
helps to recognize the advantages and 
disadvantages of carrying out passive and 
active remote sensing under varying vegetation, 
soil moisture and roughness conditions.  
 
In the present study, data from an airborne 
Passive/Active L and S-band sensor (PALS) 
were used to detect soil moisture in the 
Southern Great Plains Little Washita, 
Oklahoma region. PALS was developed to 
study the utilization of dual-frequency, dual-
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polarization, passive and active measurements 
for remote sensing of ocean salinity and soil 
moisture. The active component of the 
instrument provides radar backscatter data that 
contain added information on surface roughness 
and vegetation for soil moisture sensing. The 
instrument operates at 1.4 and 2.69 GHz in the 
radiometer channels and 1.26 and 3.15 GHz in 
the radar channels.  PALS utilizes a multi-
frequency, multi-polarized design, and capable 
of acquiring simultaneous radar and radiometric 
signatures of land and ocean surfaces. The 
radiometer receives coincidental vertical and 
horizontal emission and the radar transmits 
vertical or horizontal polarization and receives 
these two linearly polarized radar echoes 
simultaneously;  a  more thorough description 
of the PALS specifications and applications can 
be found in (Wilson et al, 2001). 
 
 The land conditions and time of study of the 
Little Washita Basin are ideal for evaluating 
new sensor systems and algorithms. The basin 
consists mostly of rolling hills (maximum relief 
is less than 200m), rangeland and pasture. For 
purposes of this paper, the representative 
texture for the surface layer soil is taken to be 
20% sand, 60% clay, 20% silt.  Land use in the 
floodplain of the western regions of the 
watershed area consists of has selected field 
sites including winter wheat, corn and other 
crops. Within the watershed, the ground truth 
effort consisted of 42 Agricultural Research 
Service (ARS) Micronet stations recording 
rainfall, relative humidity, air temperature at 
1.5 m, solar radiation, and soil temperature at 5, 
10, 15 and 30 cm below the surface. Additional 
gravimetric soil moisture and soil and surface 
temperatures were measured as well as 
vegetation and land cover mapping, soil bulk 
density, surface roughness, ground penetrating 
radar and surface heat fluxes.  

 
The PALS instrument flew over the SGP99 
field area at a nominal altitude of 3,000 feet for 
a total of 6 days between July 9 and July 14, 
1999.  Selected flight lines over the field sites 
and in incremental latitude steps were flown to 
provide flanking coverage of the Little Washita 
region. Data were gathered over a wide range of 
vegetation covers including bare soil, pasture, 
crops, and trees (pasture and crops had 
vegetation water content ranging from 0-7.18 
kg/m2).  The PALS instrument acquired data 
before and after a significant rain event on the 
third day of the study, enabling observation of 
soil wetting and drying patterns.  
  

R2 Channels 
.904 lh 
.908 lh, lv 
.92 lh, lv, sh 
.92 lh, lv, sh, sv 

 
Table I- Best subset regression models were performed to compute the optimum 
combination of  passive PALS channels for soil moisture retrieval. Listed are the 
channels that provided  the highest correlation with in-situ soil moisture in the 0-
5.0 cm range using 1,2,3 and 4 channels. 
 
 
2.0 SOIL MOISTURE ESTIMATION 
Emphasis was placed in the previous section on 
verifying the relative sensitivities of L- and S-
band passive and active measurements to 
surface soil moisture. The effectiveness of the 
passive/active sensing is evaluated in the 
following sections using a series of 
comparisons between the PALS data and in-
situ/ ancillary data collected during SGP99. 
Three techniques are examined in this paper for 
retrieving soil moisture from PALS microwave 
emissions and backscatter of the ground-canopy 
system; (a) Regression analysis, (b) Passive 
physical model, (c )Active physical model. No 
attempt has been made to create a combined 



 

passive active algorithm, rather, the analyses 
(for passive radiometer and active radar) have 
been carried out separately. 
 

2.1 Regression Analysis 
Multiple linear regression analyses were 
performed on the collected PALS/in-situ data to 
investigate the sensitivity of the individual 
channels to varying moisture content.  An 
equation of the form 
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was used, where d ji,  are the radiometer or 
radar data (brightness temperatures or 
backscattering coefficients) in channel i and 
data point j, N is the number of channels 
included in the regression, a0  and ai are the 

derived regression coefficients, and  *
jm  are the 

regression fit estimates of soil moisture.  
Assuming a uniform temperature gradient, 
(thermal equilibrium) throughout the system, 
the microwave brightness temperature Tb )( iθ  
can be expressed as 
Tbq )( iθ = qe Ti )(θ    (2)                                                 
Where iθ  is the incidence or view angle of the 
sensor, and q = {v, h} refers to the horizontal 
and vertical polarizations of the emitted 
radiation and T is the surface temperature. 
Here, for a given T, the emissivity qe )( iθ  of 
the surface is proportional to the brightness 
temperature. The active instrument has been 
shown to have a less linear relationship to soil 
moisture than the passive instrument.  
 
Using the five days of collocated data, two 
(three) days were regressed and predictions 
were performed on the remaining three (two) 
days of data. Figure 1 shows the regression 
result over all the fields using the four passive 

channels noted in Table I. The plot shows the 
predicted and in-situ soil moisture values for 
July 12th and July 14th. The regression estimate 
has an R2 value of 0.954, with predictions 
accurate within 1.92 % of observed gravimetric 
soil moisture. A number of additional 
combinations were performed for all vegetation 
ranges and days. Caution must be used when 
interpreting the regression results, for example, 
the limited number of flight lines and sampled 
fields allow for only 36 co-located (within 
300m of each other) data points to be used in  

 
 
Figure 1. Predicted  vs. In-Situ soil moisture using the statistical regression 
technique (on days July 9th, 11th, 13th) to predict soil moisture for July 12th and 14th  
over all fields. 
 
the study. Given this small data set, the 
correlation of the predicted points weigh 
heavily on those used for the initial regression.  
  
     2.2 Forward Model for Passive Radiation 
Transfer 
A physically based microwave emission model 
was used to provide verification of the relative 
sensitivities of L- and S- band passive 
measurements to surface soil moisture. The 
algorithms developed for this paper are based 
on a physical model of microwave emission 
from a layered soil-vegetation-atmosphere. All 



 

parameters were fixed in the model with the 
exception of those collected during the SGP99 
study; volumetric soil moisture, vegetation 
water content, surface temperature and bulk 
density. Surface parameters collected during the 
study were input into the model collocated by 
field type and day of study (Figure 2). All the 
variables were collected daily, except for 
vegetation water content, bulk density and 
surface roughness, whose values were assumed 
to remain constant for the duration of the study. 
The model assumes homogeneous surface 
conditions giving averaged effective values 
over the radiometer footprint, based on returns 
of real and imaginary parts of the dielectric 
constant of the soil, for a given bulk density, 
frequency, volumetric moisture content, sand 
and clay fractions, and temperature (Using 

empirical relations taken from Dobson et al. 
1985). 

 
 

Figure 2. Simulated brightness temperatures computed at   
frequency (1.4 GHz) plotted against observed PALS 
brightness temperatures. 

A combination forward model-statistical 
regression-inverse physical model technique 
was used to retrieve soil moisture over all the 
fields. Using this method, two(three) days of 
surface parameter data were input in the model 
and the resulting brightness temperatures were 
regressed against the corresponding PALS 
brightness temperatures (as the two are not 
exact). The resulting regression coefficients 
were then applied to the remaining three(two) 
days of observed PALS brightness temperature 
to derive a set of model brightness temperature. 
An iterative least-squares minimization  
algorithm was performed on the modeled and 
computed brightness temperatures, with soil 
moisture adjusted iteratively (spanning the 
dynamic range: mg = 0.03 to 0.35 g cm-3) until 
the difference between the modeled and 
computed brightness temperatures was 
minimized.  The next step in the soil moisture 
retrieval scheme was to apply the regression 
coefficients to the remaining three(two) days of 
field data in the model inversion.  The results of  

 
2.3 Forward Model for Active Backscatter 

Prior investigations utilizing microwave 
scatterometers for retrieval of surface variables 
have shown long wavelength, co-polarized 
backscatter possible benefits when applied to 
surface roughness and land-cover separability 
(Chauhan et al. 1994; O’Neill et al. 1996 and 
Chauhan, 1997). These studies have 
demonstrated the strong degree to which 0σ  is 
a function of surface roughness, vegetation and 
near surface soil moisture. Having explored the 
PALS passive channels for soil moisture 
sensitivity, the active channels were examined 
to analyze the possible information retrievable 
using the active channels.  
 
This paper utilizes scattering models developed 
by Dobson et al. 1986 and Dubois et al. 1995.  
From the 0

hhσ  and 0
vvσ   measurements and the 

Dubois empirical model, we are able to 
interpret the response of the backscatter 
coefficients to increased soil moisture. Figure 6 



 

presents the 0
hhσ  response of the model verses 

the in-situ measurements from the PALS data 
over the low vegetated fields. This model has a 
better correlation (R2=0.6) with the PALS 
backscatter compared with the Dobson model, 
possibly a result of the robustness of the 
empirical model (applicable to a wider range of 
conditions). This is surprising, given that the 
Dobson model has inputs of vegetation 
parameters, whereas the Dubois excludes all 
vegetation inputs.  
 
3.0 CONCLUSION AND DISCUSSION 
A combination of multiple regression analysis 
and contrasting evaluations with physical active 
and passive models were used in this study for 
the evaluation of the PALS instrument’s 
sensitivity to near surface soil moisture. The 
soil moisture signal was found to be well 
received for bare as well as high vegetated 
fields. Aside from soil moisture retrievals, the 
purpose of this paper is to: 

1) Illustrate the sensitivity of remote 
sensing measurements (active and 
passive) with soil moisture. 

2) Demonstrate our (complete) knowledge 
of the emission (passive) and scattering 
(active) physics on ancillary variables 
such as vegetation water content, 
surface roughness and temperature. 

All three prediction techniques exhibited 
varying soil moisture retrieval potential. On 
average, over half of the predictions were 
within 2% in-situ gravimetric soil moisture. 
Interestingly, the passive model proved to give 
the best results for the low vegetated fields, 
(average standard deviations of 2.13% mg) vs. 
2.27, 2.7 and 13.2 using the regression 
technique, active Dubois and Dobson models 
respectively. The present paper attempts to 
provide a unique framework for studying the 
active/passive observation of the land surface 

under diverse conditions. It starts with a 
statistically-based regression which is of 
limited scope (considering the limitation of the 
data set). The prediction of soil moisture based 
on a physically-based forward problem is 
motivated by our desire to ensure a full 
understanding of the radiative transfer and 
backscatter process. It is seen that such (a 
physically-based) method coupled with 
regression analysis serves as a good tool for this 
and other studies. The physically based 
emission algorithm is found to correlate well 
with the PALS data collected over bare and low 
vegetated (biomass < 0.25 kg m-2), medium  
(0.25-3.0 kg m-2), and high(>3.0 kg m-2) 
vegetated fields, with LH-band brightness 
temperature standard deviations of 6.6K, 9.9K, 
and 6.17K respectively. The active model was 
found to provide additional information, 
however, the regression and inverse passive 
model technique were found to be more 
reliable. . In this study, we do not make an 
attempt to merge the active and passive 
components into a single retrieval technique. 
Such a single technique could serve as a 
method to retrieve all the surface variables 
involved, viz., soil moisture, surface 
temperature, surface roughness, vegetation 
biomass and water content. However, given the 
limited extent of the data, we do not carry out 
such a combined retrieval, but, hold hope for 
such a method (and algorithm) through a future 
field experiment.   
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