
1. INTRODUCTION

A framework is developed in which most
ensemble Kalman filter methodologies docu-
mented to date can be described while still sup-
porting a more general class of ensemble filters.
The derivation begins with the nonlinear filtering
problem and applies a sequence of simplifying
assumptions. The introduction of a joint state /
observation space leads to an ability to deal with
observations related to the model state variables
by non-linear functions. A least squares assump-
tion (equivalent to assuming a local Gaussian rela-
tion amongst the prior joint state variables) has
been made, sometimes indirectly, in many descrip-
tions of ensemble Kalman filters. Here, that
assumption is made explicitly and a significant sim-
plification in the description of the algorithms
results. Under the assumptions made here, the
ensemble filter problem simplifies to an application
of an ensemble filter to a scalar, followed by a
sequence of linear regressions.

2. ENSEMBLE FILTERING

This section only discusses what happens
at one time at which observations become avail-
able. Each ensemble member is integrated forward
in time independently using a forecast model
between times at which observations are available.

A joint state/observation space is defined
by the joint space state vector
z = [x, h(x)] = [x, y]         (1)
where x is the model state vector, y = h(x), referred
to as observation variables, is the expected value
of the observations available at this time, and z is a
vector of length n + m where n is the number of
state variables and m is the number of observa-
tions available at this time. Observations are
assumed to be selected from a distribution with
expected value given by h(x) and an associated
observational error distribution.

The distribution of the posterior (updated)

distribution zu = [xu, yu] can be computed from

the prior distribution, zp = [xp, yp], as

p(zu) = p(yo | zp)p(zp) / normalization       (2)

where yo is an m-vector of the observed values
available at this time. (2) implies that subsets of
observations with independent (observational
error) distributions can be assimilated sequentially.

Let yo be composed of s subsets of observations,

, where the distribution of

the observational errors for observations in subset i
is independent of the distribution for the observa-

tions in subset j, for . Then

.          (3)

If the observational error covariance
matrix, R, is not diagonal, a singular value decom-
position can be performed on R. The prior joint
state ensembles can be projected onto the singular
vectors and the assimilation can proceed. The
updated state vectors can be projected back to the
original state space. Given the application of this
SVD, a mechanism for sequential assimilation of
scalar observations implies no loss of generality for
observations with arbitrary Gaussian error distribu-
tions.

In ensemble methods for solving (2), infor-
mation about the prior distribution of the state vari-

ables, xp, is available as a sample of size N
produced by N applications of a prediction model.

A sample of the prior observation vector, yp, can
be created by applying the forward observation

operator, h, to each ensemble sample of xp.
Define the joint state space forward opera-

tions operator for a single observation as the order
1 x n+1 linear operator H = [0, 0, ..., 0, 1].The
expected value of the observation can be calcu-
lated by applying H to the joint state vector, z. The
conversion of the possibly non-linear h to the linear
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H is a primary motivation for applying ensemble fil-
ters in the joint state space.

The updated probability for the marginal
distribution of the observation joint state variable, y,
can be formed from eq. (2)

         (4)
where the subscript on the probability densities
indicates a marginal probability on the observation
variable, y. The 1-D problem for this marginal dis-
tribution can be solved by many methods.

This suggests a partitioning of the assimi-
lation of an observation into two parts. The first
determines updated ensemble members for the

observation variable y given the observation, yo.
An increment, ∆yi, is computed for each ensemble

member, , i = 1, ..., Nwhere N is

the ensemble size.
Given increments for the observation vari-

able, the second step computes corresponding
increments for each ensemble sample of each
state variable, ∆xi,j. This requires assumptions

about the prior relationship between the joint state
variables. The assumption used here is that the
prior distribution is Gaussian (or a sum of Gauss-
ians for complete generality). This is equivalent to
assuming a least squares fit (local least squares fit)
to the prior ensemble members summarizes the
relationship between the joint state variables.

Figure 1 depicts an example in which there
is a single state variable, x. The observation vari-
able, y, is related to x by the operator h which is
nonlinear in the figure. Increments for each ensem-
ble sample of y have been computed. The corre-
sponding increments for x are then computed by a
global least squares fit (linear regression) so that

.         (5)

This is just a statistical linearization and inversion
of the operator h.

The linearization can also be done locally
(Fig. 2) by computing local estimates of covariance
for each ensemble member, for instance, by only
using a set of nearest neighbors to compute sam-
ple covariance. Figure 2 shows an idealized form of
nearest neighbor linearization in which only a sin-
gle closest ensemble member is used to compute
the statistical linearization. When x is functionally
related to y as in Fig. 2, local linearization methods

can give significantly enhanced performance when
h is strongly non-linear over the prior ensemble
range of y.

This two step method can be extended
trivially to problems with arbitrary numbers of state
variables. Least squares fits can be made to com-
pute the increments for each state variable inde-
pendently by regression:

.         (6)

All relevant information about the prior covariance
of the model state variables, x, needed to compute
increments is contained in the correlation of the
individual scalar state variables with the observa-
tion variable y.

When the state variable being updated and
the observation variable are not functionally related
as is generally the case in multivariate models, the
use of local linearizations can be more problem-
atic. Figure 3 shows an example where state vari-

able x1 is being updated by an observation, yo.
The expected value of the observation is y =
h(x2), where x2 is a second state variable, here

moderately correlated with x1. In this case, the lin-

ear regression for x1 performs a statistical linear-

ization in the presence of noise. Using large
(global) regressions is useful to filter out this noise.
On the other hand, using local linearizations can
help to resolve more of the structure of h. Applying
local regressions that are based on too few ensem-
ble members can lead to disastrous over-fitting
behavior as demonstrated by the application of an
idealized single nearest neighbor linearization in
Figure 3. Trade-offs in choosing local versus global
linearizations are an important part of tuning
ensemble filters for improved performance.

3. RELATION TO ENSEMBLE KALMAN FILTERS

A variety of ensemble Kalman filters have
been described in the literature. The two most
common of these, the perturbed observations
ensemble Kalman filter (EnKF) and the Ensemble
Adjustment Kalman Filter (or square root Kalman
filter) can be recast in the two step framework out-
lined in the previous section preserving answers to
machine precision. First, update increments are
computed for each ensemble sample of the obser-
vation variable using scalar versions of the tradi-
tional algorithms. Eq. (6) is then used to solve for
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the increments, ∆xj,i, for each state variable in turn

in terms of ∆yi by linear regression.

Some implications about the computa-
tional complexity of ensemble filtering can be
drawn from (6). First, there is no need to compute
the prior covariance among the model state vari-

ables or the complete updated covariance, Σu.
Second, once the observational variables are
updated, the increments for the state variables
depend only on ratios of prior (co)variances. Multi-
plication of the prior covariance matrix by a covari-
ance inflation factor as is done in many existing
ensemble Kalman filter implementations does not
impact the solution to (6) although it does impact
the observation variable increments.

4. ADDITIONAL METHODS FOR UPDATING
OBSERVATIONAL VARIABLE ENSEMBLES

Once update increments for the observation vari-
able are computed by one of the following meth-
ods, the rest of the joint state variables can be
updated by linear regression using (6).

4.1 A Kernel filter

If the prior distribution of the observation variable
may have significant non-Gaussian structure, a
kernel method may be useful for computing the
update increments. One simple example of kernel
methods is the Fukunaga method applied in one
dimension. In this algorithm, the prior distribution is
represented as a sum of Gaussians with identical
variance but different means. The means are the
individual prior ensemble samples and the vari-
ance is the prior sample variance multiplied by a
scaling factor. The product of a prior expressed as
a sum of Gaussians and a Gaussian observational
distribution is equal to the sum of the products of
the individual prior Gaussians and the observa-
tional Gaussian. In the most naive application of
this method, an updated ensemble can be gener-
ated from this continuous representation by ran-
domly sampling the sum of Gaussians.

This kernel method can be extended by
allowing more general kernels. For instance, ker-
nels with different means and different variances
can be used following a variety of techniques like
the class of nearest neighbor methods. In addition,
kernels from the class of ‘generalized’ Gaussians
can lead to a variety of related kernel algorithms.

4.2 Quadrature Product Methods

Update methods based directly on
‘quadrature’ solutions to (4) can be used to find
increments for observation variables. One imple-
mentation of such a method begins by computing a
continuous approximation to the prior distribution
from the ensemble sample; again, kernel methods
are an example. Quadrature methods can then be
used to divide the real line into intervals over which
the product in the numerator of (4) is computed to
approximate the updated distribution. An appropri-
ate method can be used to sample this updated
distribution to generate new ensemble methods.

5. CONCLUSIONS

A local least squares framework for ensemble filter-
ing has been derived leading to a two-step ensem-
ble filtering update procedure when a new
observation becomes available. Step one is to
compute update increments for each ensemble
member of a prior estimate of the value of the
observation in a joint state / observation space.
This can be done using various algorithms includ-
ing the perturbed observation ensemble Kalman fil-
ter and the ensemble adjustment Kalman filter.
Other update methods, for instance a kernel filter,
extend beyond the Kalman filter context and can be
referred to more generally as ensemble filters.

Step two computes increments for prior
ensemble members for each state variable in turn
using the prior ensemble sample to do a linear
regression of each state variable on the observa-
tion variable. Increments for a state variable are
computed by multiplying the corresponding obser-
vation variable increment by the prior covariance of
the state and observation variable and dividing by
the prior variance of the observation variable.

Deriving ensemble filters in this two step
context has many advantages. First, it is computa-
tionally more efficient than previous descriptions of
ensemble Kalman filter algorithms. The cost is
dominated by computation of the prior sample
cross covariance of the observation and state vari-
ables and the variance of the observation vari-
ables. A second advantage is that more elaborate
and expensive ensemble update methods can be
applied because they need only be applied in a
scalar fashion to the observation variables. A final
advantage is that it is easier to understand differ-
ences between various filtering algorithms. Differ-
ences need only be explored in a scalar context
making relative features of, for instance, the EnKF
and EAKF easier to understand.
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y=h(x) Figure 1: An idealized representation
showing the relation between update
increments for a state variable, x, and an
observation variable, y, for a five mem-
ber ensemble represented by asterisks.
The projection of the ensemble on the x
and y axes is represented by ‘+’ and the

observation, yo is represented by ‘x’. In
this case, y is functionally related to x by
h. The dashed grey curve shows a glo-
bal least squares fit to the ensemble
members. Update increments for
ensemble members 1 and 5 for y are
shown along with corresponding incre-
ments for the ensemble as a whole (vec-
tors parallel to least squares fit) and for
the x ensemble.

*

*
*
*

**
++++++

+

+
+
+

+
+

x

y

x

Observation

∆y5

∆y1

∆x1 ∆x5

y=h(x)

Figure 2: As in Figure 1 but showing the
application of local least squares fits, in
this case using only the nearest neighbor
in y, to compute the updates for x given the
updates for y.
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Figure 3: As in Figure 1, but now y = h(x2),
where x2 is a second state variable that is
moderately correlated with x. The thin
dashed vector demonstrates the hazard of
using local least squares fits when the
observation variable y and the state vari-
able x are not functionally related.


