
JP1.10

 CROSSING PLATFORMS: PCS AND AWIPS USING

THE PYTHON PROGRAMMING LANGUAGE

C. Michael Callahan

National Weather Service, Louisville KY

1. INTRODUCTION

The author has worked with a number of different

computer systems over the years, and has re-written many

programs. With the ar rival of AWIPS, he d ecided to

investigate cross-platform programming. He experimen ted

with a number of different langu ages but finally settled on

the Python pr ogramm ing language . Python was created to

be an interactive, dynamic, object-oriented, cross-platform

language (van Rossum 2000a). Because it is free and

widely available, it has been used in many different

applications, ranging from small system scripts to large,

complex Web-based systems. The author found the

language attractive because of its power and ease of use.

Also, Python is not dogmatic. It does not force one into a

certain program ming style. For example, while Python has

excellent object-oriented features, one can write in a

procedural style just as easily. After learning a few new

concep ts and Python’s simple syntax, the programmer can

quickly adopt old algorithms to Python, and then improve

these programs as they become familiar to the more

powerful features of the language. The author now uses

Python for most of his prog ramming tasks.

The standard library that comes with Python is a rich

collection of classes and functions that makes

development easy (van Rossum 2000b). Included are

interfaces to FTP, HTTP, SMTP, XML, CGI, and other

Web technolog ies.

Python includes a m odule which links to the Tk library in

order to create graphical user interfaces (GUIs). Using

this module, Tkinter, one can create Python programs that

adopt the native look-and-feel of any platform (Lundh

2000). Tk is included on almost all Unix-based

computers, but rarely is found on computers running

Window s. In order to eliminate this potential problem, the

standard Python installation package for W i ndows also

installs TCL and Tk under the Python directory. Thus, by

using Tkinter, one can write GUI programs that will run

anywhere there is a Python installation.

* Corresponding author address: C. M ichael

Callahan, National Weather Service, 6201 Theiler

L a n e , L o u i s v i ll e , K Y 4 0 2 29 ; e - m a i l :

mike.callahan@noaa.gov

In order to show the power of the Python programming

language, this paper will describe two ap plications, Dial

and Convert . Dial is a Windows-based program which

was designed to interrogate hydrologic gauges, and send

their data to the hydrologic AWIPS database. Convert is

a simple GUI-ba sed meteorologica l converter whose code

runs on many platforms.

2. DIAL

The Local Data Acquisition and Dissemination (LDAD)

component of AW IPS origin ally was envisione d to

accomplish what Dia l does. However, the LDAD

hardware is almost overloaded with background processes

and the gauge dialing software has been difficult to set up

and maintain. T he author felt tha t the gauge dia ling task

would be better accomplished using a PC and not tying up

valuable LDAD resources. The PC interrogates the

gauges, encodes the collected data into the Standard

Hydrometeorologic Exchange Format or SHEF (NWS

1998), and then sends the data to LDAD, which allows

AWIPS to post the data into its hydrologic database. In a

sense, AWIPS hands the interrogation task to the PC,

rather than the LDAD hardware. However, with a few

changes dealing with modem commun ications, Dia l could

run on LD AD or o ther hardwa re as well.

The program is structured across five files whose

combined size is about 11 4K. T he main co de is contained

in DIAL.PY which handles the interfaces, error trapping,

interrogation, decoding, and SHEF encoding. Cu rrently,

Dial supports 4 types of gauges: Handar 550A (known in

the NWS as a LARC), Handar 560A, Campbell Recorder

10, and Sutron 8200. The modular design makes it easy

to add new gauge types for future expansion.

The simple interface to the modem is in SMODEM.PY.

This is the only file which is specific to Windows. In

order for Dial to run on another platform, it would be

necessary to rewrite SMODE M.PY. However, this task

would no t be too difficult.

The AWIPS L DAD interface is contained in two files,

AWIPS.PY and AWIP ARMS .PY. The first file is a

simple interface to send data to AWIPS via LDAD . The

transmission is through a mapped network drive and/or

Figure 1: Dial GUI

FTP. AWIPARMS.PY contains the parameters for a

mapped network drive and FTP servers of up to three

different LD ADs.

Most of the information Dial need s is contained in

DIAL.INI. The old INI style file was chosen rather than

to use the Windo ws registry. First of all, INI files are easy

to maintain and even re-create in case of a failure. Also,

INI files are portable.

Dial can be executed interactively or in an autom atic

mode by using command line parameters. The former

method generally is used during high water eve nts to

obtain the most recent data. The latter method is used

routinely when Dial is started by the W indows 98 task

scheduler. Thus, one program handles routine and special

data collection.

2.1 Dial Prog ram Stru cture

DIAL.PY was written as an object-or iented program.

Below is a list of the classes created:

InitStream: Encapsulates the routines needed to read the

ini file.

Catcher: Catches any errors that arise while the GUI

is running.

Gui: Encapsulates not only the GUI but all the

events that the GUI can generate. Most of

the code for the program is contained in this

class.

SMO DEM .PY creates these classes:

Timer: Encapsulates a very simple stopwatch-type

timer.

Modem: Encapsulates a simple modem interface for

Window s PCs.

AWIP S.PY creates this class:

Ldad: Encapsulates an interface for sending

products to LDAD.

2.2 Dial Operation

Dial first opens the log file, DIAL.LOG, routes all future

output to the file, and writes the start messa ge. Then , it

checks the c omman d line.

If it finds two optio ns, it sets the mode to automatic and

assumes the first option is a gauge list. The program tries

to open the gauge list and read the gauges into memory. If

this fails, Dial assumes the first option is the ID of a gauge

and puts this into memory. The second o ption is stored as

the hours of past data desired.

If no options are found, the mode is set to interactive, the

gauge list is cleared, and hours desired is defaulted to 6.

Now, the initialization file, DIAL.INI, is read, checked,

and the data stored into memo ry. Next, the m odem p ort is

initialized and the modem is reset and tested. The modem

must respond with “OK” within two tries or else the

program logs the erro r and exits.

Now, the program starts Tkinter, creates the GUI, and

begins processing all user-generated events (Fig. 1). After

the user selects the desired gauges and clicks on the DIAL

command button, or the program is in automatic mode,

the gauges are placed into a call list and the dialing

process begins.

For each gauge, the modem port is set to the correct

parameters, and a message is written to the log stating that

the dialing process has begun. The gauge is dialed and the

program waits for the gaug e to answer. If there is no

dialtone, the line is busy, or there is no answer after two

tries, the failure is written to the log and the nex t gauge is

called. If the gauge does answer, the gauge is polled and

the raw data it send s back is store d and written to the log

file. Each gauge type has its own polling and processing

routines.

Once the polling is complete, the processing begins. The

raw data is converted to a SHEF format report, then stored

and written to the log (Fig. 2) and displayed on the screen.

The polling and processing continues until all gauges are

called, or the user clicks on STOP. Clicking STOP while

in the automatic mode sto ps dialing and switches the

program to the interactive mode.

At this point in the interactive mode, the user can call

more gauges. W hen the dialing is completed, he or she

clicks on EDIT . At this point, the screen is cleared and the

SHEF messages of all the gauges are displayed. The user

can edit the messages to add co mments or correct bad

data.

When the editing is completed, the user clicks on SEND.

The program will collect all the SHEF messages

>>>Dial 3.10 started Thu Sep 20 12:58:48 2001 UTC.
Dialing Gills Rock WI... No dialtone.
Exiting... stopped Thu Sep 20 13:04:52 2001 UTC.

>>>Dial 3.10 started Thu Sep 20 14:41:04 2001 UTC.
Dialing Deputy IN... answered at 14:42 UTC... asking for 3 scan(s).
6
12:15 07.08 07.08
13:15 06.99 06.99
14:15 06.88 06.88

.E DEPI3 0920 DH1415/HGIRP/DIN-60/6.88/6.99/7.08
Dialing Fredricksberg IN... answered at 14:42 UTC... asking for 6 scan(s).
12
12:00 02.39 02.39
12:30 02.41 02.41
13:00 02.42 02.42
13:30 02.43 02.43
14:00 02.44 02.44
14:30 02.44 02.44

.E FRDI3 0920 DH1430/HGIRP/DIN-30/2.44/2.44/2.43/2.42/2.41/2.39
Sending SHEF data to AWIPS... using FTP... First attempt was successful.
Exiting... stopped Thu Sep 20 14:44:15 2001 UTC.

Figure 2: Dial log

and write them to a temp orary file, DIA L.SHF . Next, it

will add the correct headers and trailers to the file. Now,

it attempts to copy DIAL.SHF to a network drive which

points to the local LDAD /data/Incoming directory. The

program now looks at the L DAD directory ev ery 5

seconds for a user-determine d amoun t of time to see if

AWIPS ingests it and deletes the file.

If this fails, the program will try to logon the FTP server

of the local LDAD and send the file to /data/Incoming.

Again, it waits to see if AW IPS ingests a nd delete s the

file. If this fails, two other FTP servers of remote LDADs

are attemp ted.

If any of these FTP transfers fails, the program creates an

email message and sends it to a list of recipien ts. This

list, the frequency of transmitted messages, and the error

messages desired is defined by the user. For example, the

service hydrologist may want to know about failures every

hour, but the system analysis may want to be informed

about failures every 6 hours. Having three sites ensures

that the decoded SHEF data will make it onto the AWIPS

network, unless the PC’s Internet connection fails. Notice,

Dial will collect and disseminate data even if the local

AWI PS is dow n.

After the program exits, the modem is reset, the modem

port is released, the GUI is cleared, a closing me ssage is

written to the log, and the log is trimmed to delete the

earliest session.

3. CONVERT

Convert is a cross-platform meteorological units converter

that can handle 50 different c onversio ns. W hile a units

converter is nothing new, the author sele cted this project

because he wanted to develop a completely cross-platform

GUI program that was useful for all people in the National

Weather Service. He also wanted to d emonstrate how easy

it was to accomplish this using Python.

Convert handles these co nversions between these units:

Temperature: °F, °C, °K

Length: in, ft, mm, m

Speed: mph, kt, km/h, m/s (note: these can

also be used to convert be tween mi,

nm, and km)

Pressure: mb, mm of Hg, in of Hg

Relative Humidity: temperature and dewp oint in °F, °C,

°K

Heat Index: temperature in °F, °C, °K; dewpoint

in °F, °C, °K; o r relative humidity

in percent

Wind Chill: (both the old and new equations)

temperature in °F, °C, °K; wind

speed in m ph, kt, km/h, m/s

Convert was designed to be easy to in stall. All that is

required is to copy the CONVE RT.PY file to a directory

available to all users and create links to it. No registry

editing or start up scripts are required. T he file is small,

only 11K .

3.1 Convert Operation

After the user starts the program, it looks for a command

line argument. If found, it sets the operating system

DISPLAY environme nt variable to the ar gument.

Windows and most Linux systems ignore this variable, but

AWIPS requires it. This allows the display code to be

cross-platform. The AW IPS disp lay environm ent variable

Figure 3a: Convert GUI (Windows 98)

Figure 3b : Convert GUI (AWIPS)

for a text workstatio n is this: xt#-xxx:0.0, where # is

the workstation number and xxx is the site. Graphics

workstations are this: ws#-xxx:0.0 for the left screen

and ws#-xxx:0.1 for the right screen.

Next, the program starts Tkinter and builds the GUI (Fig.

3a and 3b). Now it waits for the user to generate events.

The program comes up ready to co nvert °C to °F. The

user clicks on the desired input and output units to set up

the converter. Note, calculating relative humidity, wind

chill, or heat index requires two input bo xes.

Users can either use the mouse and click on the slider bar,

or the keyboard to work the converter. For making many

different conversions, the mouse and slider bar work best.

When the user selects a n input unit, pre-d efined limits

automatica lly are imposed on the slider. Slider values are

always whole numbers.

To exceed the se limits, or to ma ke conve rsions without

the mouse, the keyboard can be used. Once the converter

is set up, the user presses the up and down keys to clear

the top and bottom entry windows. The user then types in

the values to co nvert and p resses Enter .

4. SUMMARY

In the Louisville NWS office, Dial is used as an integral

part of the Advanced Hydrologic Predication System

(AHPS). Dial calls gauges every 6 hours, and the AHPS

software produces hydrographs which are placed on the

Web. This is the on ly source of re al-time data for some

gauges. Convert is used routinely, running on Windows

PCs and AWIPS . Both Dial and Convert are being used in

a number of different offices as well.

As hardware in NWS offices continue to evolve, it will be

necessary to port operational programs to different

platforms. Taking advantage of cross-platform techniques

demonstrated in Dial and Convert using the Python

programming language can make this pro cess almost

painless.

Python is not a programming panacea. It should not be

used for system critical tasks where processing time is the

most important factor. How ever, even in these

applications one can write time-critical routines in C, and

call them from inside Python ap plications.

In the past, the auth or has written p rograms a nd scripts in

C, C++, C shell , Delphi, and Perl for many different

computers and operating systems. Now, he finds that he

can stay with one language, Python, not worrying about

the platform, and get the job done.

5. REFERENCES

Lundh, F., 1 999: An Introductio n to Tkinter ,

www.pythonware.com/library/tkinter/introduction/

index.htm

National Weath er Service, 1 998: Stan dard H ydro-

meteorological Exchange Format, Version 1.3, Weather

Service H ydrology H andboo k No. 1

van Rossum, G., 2000a: Python Tutorial, www.python.org

/doc/2.0/tut/tut.html

___, 2000b: Python Library Reference, www.python.org

/doc/2.0/lib/lib.html

6. ACKNOWLEDGMENTS

The author would like to thank the service hydrologists in the
National Weather Service for testing Dial and Convert and for
making excellent suggestions to improve the programs. He
would also like to thank Ted Funk for reviewing this
manuscript.

