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1. INTRODUCTION

Since 1995, the Canadian Meteorological Centre (CMC)
produces operational seasonal forecasts using
dynamical and empirical models. These forecasts are
“deterministic” in their nature. The seasonal
temperature anomaly at any one location is forecast as
being above normal or near normal or below normal.
This approach does not take directly into account the
confidence associated to the individual forecast. It is
difficult to the users to make efficient use of this type of
forecast partly because of that fact (Nicholls, 1999). In
making use of the ensemble technique, we proposed a
simple method to associate a probability of occurrence
to each possible category. This method is called
“probabilistic”. The probability of occurrence is simply
calculated  using the number of model integrations that
forecast each one of the 3 categories.

According to Nicholls (1999),  another important factor
that prevents the large use of long-range forecast is that
their economic value has not been demonstrated. As
shown in Derome et. al. (2001), Kharin and Zwiers
(2001) and Kharin et al. (2001), the CMC seasonal
forecast system has some skill, although modest, for the
prediction of surface air temperature anomaly in
Canada. However, the relationship between skill and
economic value is complex and reliance on skill alone
may give a misleading impression of forecast value
(Richardson, 2000). In this paper, adopting a simple
decision model proposed by Katz and Murphy (1987),
we study the relative economic value of the CMC
seasonal forecasts.

In section 2, the data set used in the study is described.
The deterministic and probabilistic approaches used at
CMC are presented in section 3. The Katz and Murphy
decision model is summarised in section 4. The results
obtained with CMC seasonal historical forecasts during
the 1969 to 1994 period are presented in section 5.
Finally, some conclusions are drawn in section 6.

2. HISTORICAL FORECASTING PROJECT DATA

In order to assess the skill of CMC seasonal forecast
system, all seasonal forecasts over the years 1969 to
1994 were generated in hindcast mode (Historical
Forecasting Project or HFP). As described in Derome et
al. (2001), this project is a joint effort between McGill
University, the Canadian Centre for Climate modelling

and analyses (CCCma), CMC and Recherche en
Prévision Numérique (RPN).  The models used are the
CCCma second generation General Circulation Model
(McFarlane et al., 1992) and the RPN Global Spectral
model (Ritchie, 1991). The forecast seasons are
December-January-February (DJF), March-April-May
(MAM), June-July-August (JJA) and September-
October-November (SON). The HFP set-up is similar to
the CMC operational one. The models use as input,
amongst other things, sea surface temperature (SST)
anomalies, sea ice extent (ICE), snow coverage, winds,
temperatures, humidity and pressure. The global SST
anomaly of the month prior to the start of the models
runs is persisted through the 3 month forecast period.
The details of the treatment of the surface boundary
fields can be found in Derome et al. (2001).

Each model is integrated throughout the season (three
months) in an ensemble of six members. These six runs
for each of the two models are initialised with analysed
atmospheric conditions that are lagged by six hours.
This leads to twelve seasonal forecasts per seasons, or
a twelve member ensemble.

3. DESCRIPTION OF THE DETERMINISTIC AND
PROBABILISTIC METHODS

The current CMC operational seasonal products are
based on a deterministic approach. The surface air
temperature anomaly forecast is done using the 500-
1000 hPa thickness (DZ) anomaly extracted from the
twelve member ensemble. The DZ fields of the model
runs are output every 12 hour and averaged over the
season. The two ensembles of six forecasts are
averaged separately for both models. Then a
hybridisation of the two DZ forecasts is done using a
Best Linear Unbiased Estimator (BLUE) method
(Derome et al., 2001). This method has been shown to
give better or equivalent results than a normalised
average of the two model outputs for every season. The
hybridised thickness anomaly field (DZa) is then related
to the surface temperature anomalies using linear
regression analysis.

The precipitation forecast is simply the ensemble
average of the seasonal precipitation amount anomaly
(PCPN). However, the anomaly field is normalised to
take into  account the individual models standard
deviations. This is necessary to ensure that the variance
of the forecasts is close to the observed inter-annual



variance. The anomaly is calculated using as a climate
the average of the HFP runs.

The temperature and precipitation anomalies are then
compared to the model climatology in order to produce
a three category forecast (“below”, “near” and “above
normal”). The threshold values to be different from
normal are ±0.43 times the model inter-annual standard
deviations. By design all categories have the same
probability (1/3) to occur, so that a random forecast
would be correct one third of the time on average.

The probabilistic forecasts are made by counting the
number of members in each category divided by the
ensemble size as a probability of occurrence. The
predicted fields are the direct model output Surface Air
Temperature (SAT) anomaly and PCPN.

4. A COST-LOSS DECISION MODEL

Following work from Katz and Murphy (1987),
Richardson (2000) applied a simple decision model to
medium range forecasts to show the value of an
ensemble forecast system. The decision model was
also used by Palmer et al. (2000) and Graham et al.
(2000) on a series of seasonal forecasts made by
several forecast models. We simply applied the
Richardson approach to CMC historical seasonal
forecasts to study their economic value.

The decision model is based on Table 1 where the cost
and loss for different outcomes are displayed. The
model is based on the fact that a user of the forecast
can take an action (at a cost C) to prevent a part L1 of
the loss L he/she will suffer if an event occurs.  The
events considered here are temperature or precipitation
being below, near or above the normal on the seasonal
time scale. As mentioned previously, the threshold
values chosen for being above, near or below normal
are 0.43 times the standard deviations of the fields.

Table 1: Cost and loss for different outcomes

O ccurs

N o Y es

N o 0 L

T ake action

Y es C C  +  L  - L 1

From Table 1, we can calculate the expected expense
of using only climatological information. With
climatological information, the user’s only choice is
always act or never act. He/she will always act if the

cost of always taking action is less than the cost of
doing nothing and suffer the loss when the event
occurs. Otherwise, he/she will never act. The expected
expense of using climatological information is then

( ){ }E C O L L O Lc a tel im m in ,= + ⋅ − ⋅1
 (1)

where O is the climatological frequency of the event, C
is the cost of the action, L is the lost if no action is taken
and finally L1 is the lost saved by the action.

Similarly, we can calculate the expected expense of
using a perfect model (always act at the right time),

( )E  =  O C +  L -  Lperfect 1⋅   (2)

The models performance are then verified using a 2x2
contingency table (Table 2) for every binary event
(“below”, “near” and “above normal”). For grid points
over Canada, 1 is added to the grid element of the
contingency table for each observed event according to
the fact that the event was forecast (see “d” in Table 2,
called hits ) or not (“b” in Table 2, called misses). The
cases were the event was predicted but did not occur
(called false alarms) are collected in “c” while the
correct rejections are represented by “a” in Table 2.

Table 2: Contingency table of model performance

Observed

No yes

No a b a + b

Yes c d c + d

Forecast

a + c = 1 - O b + d=O a + b + c + d=1

From Table 2, the hit rate H and the false alarm rate F
of the forecast system are

H
number of correct forecasts

total number of observed events

d

b d
= =

+
and

F
number of forecasts not observed

number of non observed events

c

a c
=

−
=

+

The hit rate and the false alarm rate are then use to
calculate the expected expense of using CMC seasonal
forecasts:

( )
( ) ( )

E b L c C d C L L

F O C H O L C O L

forecast = ⋅ + ⋅ + ⋅ + −

= ⋅ − ⋅ − ⋅ ⋅ − + ⋅
1

11
 (3)



The relative economic value is then defined as the
reduction in expense of using the CMC forecasts versus
the climatology over the reduction in expense of using a
perfect model versus the climatology. Then,

V
E E

E E
c ate forecast

c ate perfect

=
−
−

lim

lim

  (4)

Using the equations 1, 2 and 3, the relative value
becomes,

{ } ( ) ( )
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min ,

α α α
α α
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where α = C / L1 is the cost of taking action expressed
as a fraction of the potential loss protected by the action
or the cost-loss ratio. Similarly, for the probabilistic
system there are a hit rate and a false alarm rate for
each probability threshold (i.e. 0%, 10%, …, 50%, etc.).
With the probabilistic system, a event is predicted if the
forecast probability is greater or equal to the threshold
otherwise it is not. Equation 5 is then used for every
thresholds to estimate the value of the probabilistic
system.

The relative value is usually plotted as function of the
cost-loss ratio (cost-loss diagram). In Figure 1, an
example of a cost-loss diagram is shown. The black
solid line represents the deterministic value while the
dashed lines indicate the value of the probabilistic
system. For every probability threshold, there is a value
curve. The thick dashed line is the envelope (maximum)
of these curves. The Hanssen and Kuipers (1965)
score (KS max) which corresponds to the maximum of
the curves is also indicated for both systems.

The probabilistic system value varies greatly with the
threshold for a given cost-loss ratio. The user can then
choose the threshold to maximise the potential value as
function of their cost-loss ratio value. This illustrates the
benefits of probabilistic forecasts over deterministic
forecasts (Palmer et al., 2000).

In the example presented in Figure 1, for cost-loss ratio
less than 0.18, a user is better to always act. For cost-
loss ratio between 0.2 and 0.8, the use of the forecasts
maximises the value. For cost-loss ratio higher than 0.8,
the user will benefit in never taking protective action.
The peak occurs at the climatological frequency of the
event (here 0.33) because the cost of either
climatological options is the same. At this cost-loss
ratio, the climatology does not help then the forecasts
offer the greatest benefit (Richardson, 2000).

better to act when forecast

better to always act better to never act

Figure 1: Example of cost-loss diagram where the
relative economic value is plotted in function of the cost-
loss ratio.

4. RESULTS

The relative economic value is then calculated as
described in section 3 for the surface air temperature
and precipitation anomaly forecasts made with the
deterministic and the probabilistic systems. The
forecasts are compared to Canadian surface station
observations (see Vincent and Gullett, 1999 and Mekis
and Hogg, 1999).

The economic values of the surface air temperature
anomaly forecasts in Spring and Summer are presented
in Figures 2 and 3 respectively. Only the values for the
2 extreme categories (below and above normal) are
shown. For the near normal category, the value is
usually clearly inferior to the one of the 2 extreme
categories.

For temperatures in Spring, there is a peak at 0.25 for
the above normal category forecast made by the
probabilistic system (upper panel of Figure 2) at a cost-
loss ratio of 0.33. This means that a user that makes
decisions with the help of the probabilistic system will
save 25% of what he/she will save if he/she knows
perfectly the future state of the atmosphere. This is true
for actions that cost 33% of the amount saved by these
actions. For other cost-loss ratio, the value decreases
sharply for the above normal category (higher panel of
Figure 2) and more smoothly for the below normal
category (lower panel of Figure 2). The forecast
systems are useful for cost-loss ratios of 0.1 up to 0.7,
while the value elsewhere is zero or negative. Then, it is



better to always act for cost-loss ratio less than 0.10
and to never act for cost-loss ratio higher than 0.7.

Figure 3 shows the value for surface air temperature
anomaly forecasts during the 1969-1994 Summer
seasons. This is the best results obtained by the
probabilistic system for both categories. The value peak
at 0.35 for the below category. There is a large range of
cost-loss ratio for which the value is positive (0.15 to
0.8). The deterministic system has its higher value also
in Summer but for the below category only. For the
above normal category, the best season is Winter for
the deterministic system (not shown). The worst season
for both systems is the Fall season (not shown).

For the precipitation forecasts, the economic value for
each season is very low (not shown). The maximum of
positive value is found in Fall and in Spring (close to
0.09) for the below normal category. There is no
positive value in all season for cost-loss ratio lower than
0.2 and higher than 0.45. The probabilistic system is
slightly better than the deterministic one.

Figure 2: Relative economic value of CMC system in
predicting surface air temperature during Spring (March-
April-May) in function of the cost-loss ratio. The value
was determined over the period 1969-1994. The black
line represents the deterministic system while the
dashed lines show the probabilistic system results.

Figure 3: Idem as Figure 2 but for the Summer
forecasts.

5. CONCLUSIONS

• There is economic value in using the temperature
forecast anomaly in every season (probabilistic and
deterministic).

• Relative value is maximum (0.35) for a cost-loss ratio
of 33.3% in Summer temperature probabilistic forecasts
(below normal) and in Winter deterministic forecasts
(above normal).

• Probabilistic forecasts convey more information in
allowing the user to choose his/her own threshold to
maximise the value.

• There is little or no value for seasonal precipitation
anomaly forecasts in Canada  with the current system.
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