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1. INTRODUCTION AND SUMMARY

The question of whether the distributions of
weather or climate variables and their impacts have
“heavy” (i.e., Pareto-like) tails is important for several
reasons. For one thing, its neglect can result in a
substantial underestimation of the likelihood of extreme
events (e.g., in terms of "return periods" or "design
values" used in engineering design). For another, the
question of whether extreme weather or climate events
and their impacts are increasing has been addressed
through trend analyses using conventional statistics (in
effect, assuming medium-tailed distributions) (e.g., Karl
and Knight, 1998). If these distributions were
heavy-tailed, then such trend analyses might well be
suspect. In particular, the standard errors associated
with the estimated slopes of trend lines would be
underestimated.

In the present paper, first the methodology neces-
sary to detect and model heavy-tailed distributions is
described. This methodology is based on the statistics
of extremes (e.g., Reiss and Thomas, 1997). To detect
a heavy tail, either the generalized Pareto distribution
is fitted to the extreme upper tail of the data or the
generalized extreme value distribution is fitted to
maximum values extracted from the data (e.g., annual
maxima). One convenient way to measure the effects
of heavy tails is in terms of differences in estimated
design values or return periods.

Next, one example is considered in detail to
demonstrate the application of this methodology. This
example involves a 100-yr time series of daily precipi-
tation amounts at Fort Collins, CO. With such a long
record, the evidence for a heavy-tailed distribution
turns out to be relatively strong. Annual cycles in the
precipitation parameters are explicitly modeled, reduc-
ing the possibility that this heavy tail is indirectly
induced in annual maxima.

Last, the evidence of heavy tails in weather or
climate variables and their impacts, in general, is

reviewed. Among weather or climate variables,
precipitation amount has the strongest evidence for
a heavy tail. This evidence is not overwhelming
when individual sites are analyzed separately, but
becomes stronger when either relatively long records
are available or when regional analyses are per-
formed (e.g., assuming common shape parameter
within the region). For impact variables related to the
weather or climate, the evidence of heavy tails is
quite a bit stronger (e.g., economic damage from
extreme events such as hurricanes). The question is
raised about the extent to which any heavy tails in
impact variables are attributable to the underlying
weather or climate variables, as opposed to an
inherent tendency of variables related to income or
wealth. 

2. METHODOLOGY

2.1 Generalized Pareto Distribution

The concept of a heavy-tailed distribution is
formally defined in terms of the Generalized Pareto
(GP) distribution. A fundamental theoretical result
from the statistics of extremes is that the upper tail of
essentially any distribution must be approximately of
the GP form (e.g., Smith, 2001).

The GP distribution function is given by:

F(x; F, () = 1 ! [1 + ( (x/F)]!1/(, (1)

F > 0, 1 + ( (x/F) > 0 (Reiss and Thomas, 1997,
Chapter 1). Here F is a scale parameter and ( is a
shape parameter. If ( > 0, then the distribution is said
to be heavy tailed; if ( < 0, then the upper tail of the
distribution is bounded. Taking the limit as ( 6 0, (1)
reduces to the more familiar exponential distribution
(which is medium tailed).  If ( > 0, then the moments
of the GP distribution are infinite for orders greater
than1/( (e.g., the variance is infinite if ( > ½; the
mean is infinite if ( > 1).

In practice, the two-parameter version of the GP
distribution (1) is fitted to the “excess” of the variable
over a relatively high threshold. One way to estimate
the two parameters, F and (, is by the method of



maximum likelihood, in this case requiring an iterative
numerical algorithm for nonlinear optimization (Smith,
2001). The evidence for a heavy tail can be evaluated
by the likelihood ratio test for the shape parameter ( of
the GP distribution being zero (i.e., test of GP vs.
exponential distributions) (Reiss and Thomas, 1997,
Chapter 5).

2.2 Generalized Extreme Value Distribution

An alternative approach for detecting a heavy-
tailed distribution involves modeling the maximum of a
sequence, sometimes termed “block maxima.” Another
fundamental theoretical result from the statistics of
extremes is that any limiting distribution of the maxi-
mum must be in the form of the Generalized Extreme
Value (GEV) distribution (e.g., Smith, 2001).  

The GEV distribution function is given by:

F(x; :, F, () = exp{![1 + ( (x ! :)/F]!1/(}, (2)

F > 0,  1 + ( (x ! :)/F > 0 (Reiss and Thomas, 1997,
Chapter 1). Here : is a location parameter, F is a scale
parameter, and ( is a shape parameter. The shape
parameter of the GEV distribution has the same
interpretation as that for the GP distribution (i.e., if ( >
0, then the distribution of the data whose maximum is
being taken must be heavy tailed). Taking the limit as
( 6 0, (2) reduces to the Gumbel Type of extreme
value distribution [which corresponds to the data
having a medium (or exponential-like) tail].

The three parameters of the GEV distribution, :,
F, and (, can be estimated by the method of maximum
likelihood, making use of the same type of numerical
techniques as required for the GP distribution (Smith,
2001). The evidence for a heavy tail can be evaluated
by the likelihood ratio test for the shape parameter ( of
the GEV distribution being zero (i.e., test of GEV vs.
Gumbel distributions) (Reiss and Thomas, 1997,
Chapter 4).

2.3 Poisson–Generalized Pareto Model

The Poisson–GP model, sometimes called the
“peaks over threshold” (POT) approach in hydrology,
can be viewed as an indirect way of fitting the GEV
distribution to maxima (Reiss and Thomas, 1997,
Chapter 5). It has the advantage over the block max-
ima approach that more information about the extreme
upper tail of the data can be utilized.

The Poisson–GP model involves the following two
components:

(i) Exceedances of a high threshold u are generated by
a Poisson process with intensity parameter 8;

(ii) Excesses over the threshold u have a GP distri-
bution with parameters F*and (*.

The correspondence between the parameters of the
Poisson–GP model (i.e., 8, F*, (*) and of the GEV
distribution (i.e., :, F, () is given by the following
relations:

ln8 = !(1/() ln[1 + ( (u ! :)/F],
(3)

F* = F + ( (u ! :),  (* = (

(Smith, 2001). In particular, the two shape parame-
ters are identical, so both approaches involve equiv-
alent measures of heavy-tailed distributions. Taking
the limit as ( 6 0, this model reduces to the Pois-
son–exponential (i.e., corresponding to the Gumbel
distribution for the maximum).

The technique of maximum likelihood can be
employed to estimate all the parameters of the
Poisson–GP model simultaneously, as is necessary
when fitting GEV distributions in which the parame-
ters depend on covariates (e.g., annual cycles). One
additional task is to select the threshold u, high
enough that the GP approximation is valid but not so
high that the number of exceedances is too small
(Reiss and Thomas, 1997, Chapter 5).

3. APPLICATION

3.1 Data

A relatively long time series of daily precipitation
amount (i.e., 100 yr from 1900–1999) at a single
location (Fort Collins, CO) is analyzed. This data set
has been of recent interest, because of a flood that
occurred on 28 July 1997 (Petersen et al., 1999). It
is available at the Colorado Climate Center, Colo-
rado State Univ. (http://ulysses.atmos.colostate.edu).
Fig. 1 shows a plot of the time series of annual
maxima. Despite the recent flood, there is no
evidence of a trend.

3.2 Model Fitting

To systematically study the distribution of high
precipitation amounts, several models are fitted by
the method of maximum likelihood. The GEV distri-
bution is fitted both directly to the annual maxima
and indirectly through the Poisson–GP model.
Annual cycles in the parameters of the GEV are
modeled in the Poisson–GP approach (i.e., sine
waves for : and lnF). For each model, the corre-
sponding constrained model with the shape parame-
ter ( = 0 is fitted as well for comparative purposes.



FIG. 1.  Time series of annual maxima of daily precipitation amount
(in.) at Fort Collins, CO, 1900–1999.

FIG. 2.  Effective design value (in.) for 100-yr return period of
annual maxima of daily precipitation amount at Fort Collins as
function of day within year.

A threshold of u = 0.395 in. is used in the Pois-
son–GP approach, with quite similar results being
obtained for higher threshold values. Given the marked
seasonality of precipitation in the region, it is not
surprising that the Poisson–GP model with annual
cycles fits much better than does the corresponding
model without any cycles.

3.3 Evidence for Heavy Tail

Table 1 lists the maximum likelihood estimates of
the shape parameter ( and P-values for the likelihood
ratio test of ( = 0 for the Fort Collins data. The values
of the estimated shape parameter are quite similar in
all cases, near 0.2, or indicative of a heavy tail. In the
block maxima approach, the evidence in support of a
heavy tail is somewhat inconclusive. Utilizing more
information about the upper tail, the Poisson–GP
model indicates overwhelming evidence for a heavy
tail, whether or not the annual cycle is explicitly mod-
eled.

TABLE 1. Shape parameter estimates and tests for heavy
tails in daily precipitation amounts at Fort Collins, CO.

Model (^  P-value

GEV (no cycles) 0.1736 0.0375

Poisson–GP (no cycles) 0.2119 < 10!11

Poisson–GP (cycles) 0.1818 < 10!9

Fig. 2 shows how much of a difference allowing for
a heavy tail makes in terms of design values for the
annual maxima corresponding to a return period of 100

yr for the GEV and Gumbel distributions (derived
from the Poisson–GP and Poisson–exponential
models with annual cycles). These design values
correspond to the annual maximum daily precipita-
tion amount whose probability of occurrence is 0.01.
They are termed “effective” because they vary
depending on the time of year. If the heavy tail is
ignored, a systematic underestimation occurs (rang-
ing from about 1 in. in the winter to 3 in. in the
summer).

4. DISCUSSION

In general, how strong is the evidence that
weather or climate variables and their impacts
possess heavy-tailed distributions?

4.1 Weather or Climate Variables

Unfortunately, the evidence is somewhat meager
because of the lack of systematic study of the
extreme tails of weather or climate variables. Still it
appears that when one actually looks for heavy tails,
they are readily found for certain variables, espe-
cially for precipitation amount (consistent with exam-
ple in Sec. 3).

Precipitation. In the hydrologic literature, stream-
flow is routinely found to have a heavy-tailed distribu-
tion (e.g., Anderson and Meerschaert, 1998). Unless
these results are solely attributable to the integrative
effects of stream-flow (i.e., being related in a com-
plex, nonlinear manner to precipitation over an entire
water basin), they suggest that precipitation amount
ought to have a heavy-tailed distribution as well. But
this can be difficult to conclusively determine from
only a single site, unless the record is relatively long.



When precipitation data for several locations are
modeled simultaneously in what hydrologists refer to
as “regional analysis,” the power of “borrowing
strength” indicates that precipitation amount does have
a heavy-tailed distribution (e.g., Buishand, 1989).
Applying the statistics of extremes to the same daily
precipitation data set (consisting of a large number of
stations with relatively long records) analyzed by Karl
and Knight (1998), Smith (2001) concluded that
precipitation amount does possess a heavy-tailed
distribution (Smith, 2001).

Temperature. For the most part, the evidence
points to the temperature having a moderate or
bounded upper (and lower) tail. For example, in
detailed regional analyses of a large number of sites in
the U.S. Midwest and Southeast, Brown and Katz
(1995) found that the extreme high (and low) daily
temperature has a bounded tail (i.e., ( < 0).

Wind. The situation for extreme high wind speeds
is quite analogous to that described for temperature
(Palutikof et al., 1999). Much evidence supports a
bounded tail (i.e., ( < 0), although the use of the
Gumbel type is still quite prevalent in engineering
design in practice.

4.2 Weather or Climate Impacts

Some evidence exists that the economic impact
associated with a given extreme weather or climate
event has a heavy-tailed distribution. For example,
Dorland et al. (1999) fit a heavy-tailed Pareto distribu-
tion to structural damage due to extreme wind gusts,
and Rootzén and Tajvidi (1997) showed that the GP
distribution (with ( > 0) fits wind storm damage better
than the more traditional (medium-tailed) lognormal.
Katz (2001) found evidence that the distribution of
economic damage from hurricanes, primarily caused
by high winds and flooding, has a heavy tail.

The question remains of whether the heavy-tailed
distribution of economic damage is attributable to the
underlying weather or climate variable being heavy-
tailed. Recalling that the Pareto distribution was
originally devised in an attempt to measure economic
inequality (Arnold, 1983, Chapter 1), the distribution of
income or wealth has a general tendency to be heavy
tailed. So, if extreme wind speed does indeed have a
distribution with a bounded tail as noted earlier, then
the “income” effect alone might well be responsible for
the associated damages being heavy tailed. On the
other hand, if damage did not have a heavy-tailed
distribution, it seems implausible that the underlying
climate variable could be heavy tailed.
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