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AUTOMATED, SUPERVISED SYNOPTIC MAP-PATTERN

CLASSIFICATION USING RECURSIVE PARTITIONING TREES
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1. INTRODUCTION

Synoptic map-pattern classifications attempt to
cluster atmospheric circulation fields into relatively
homogeneous groups. Ideally, each group should reflect
a distinct synoptic situation. The resulting classification
can then be wused to investigate synoptic-scale
meteorological controls on local environmental variables
(Yarnal, 1993).

Two main criteria are used to organize synoptic
map-pattern classification methods. The first criteria
separates methods based on how the atmospheric
circulation fields are linked with the local environment. In
unsupervised approaches atmospheric circulation data
are clustered without reference to local weather
conditions. Alternatively, in supervised approaches joint
consideration is given to both the synoptic circulation
and weather observed at the surface. The second
criteria separates methods based on the level of
automation of the classification procedure. Automated
procedures, usually computer-based, use an
established algorithm to generate the classification.
Manual approaches rely on human judgement and
intuition to form the classification and sort maps into
groups.

To date, synoptic map-pattern classifications have
typically employed either an automated, unsupervised
approach or a manual, supervised approach. Both
methods have different strengths and weaknesses.
While automation allows classifications to be built
quickly and be replicated easily, the use of an
unsupervised, statistically-based clustering algorithm
may result in some groups that have little meteorological
significance (Frakes and Yarnal, 1999). Consequently,
circulation-environment links may not be well resolved
using this approach. Similarly, while manual
classifications are time-consuming to build and are
difficult to replicate, they may be better at handling links
between certain synoptic situations and surface weather
conditions. As maps are grouped by a trained expert,
important synoptic controls on local weather can easily
be accounted for as part of the classification system.

An ideal compromise between these two
approaches is one that is both automated and
supervised. Hughes et al. (1993) and Zorita et al. (1995)
first applied this type of approach to synoptic
classification. In their work, recursive patrtitioning trees
(Therneau, 1983; Breiman et al., 1984) were used to
develop classification systems relating gridded sea-level
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pressure (SLP) data to rainfall conditions at stations in
North America. More recently, Schnur and Lettenmaier
(1998) used recursive partitioning to generate a synoptic
climatology of rainfall states at stations in four regions of
Australia. This method was again used by Zorita and
von Storch (1999) to classify circulation-rainfall
relationships on the Iberian Peninsula.

In contrast to automated, unsupervised
classification systems, recursive partitioning trees are
supervised and give joint consideration to both the
synoptic-scale circulation and the local environment.
Conceptually, this type of model is a discrete analog to
continuous statistical downscaling methods (Hewitson
and Crane, 1996). Similar to statistical downscaling
models, inputs to recursive partitioning trees are
synoptic-scale circulation fields and the output is a
measure of some local environmental variable of
interest.  Circulation patterns relevant to the
environmental variable are therefore more likely to be
selected than if the classification were based only on
atmospheric circulation data; patterns with little
significance are more likely to be avoided. Because
recursive partitioning models are also automated,
improved discrimination does not come at the expense
of speed or ease of replication.

Synoptic climatological applications of the recursive
partitioning algorithm have tended to focus on a single
local variable of interest. Hughes et al. (1993), Zorita et
al. (1995), Schnur and Lettenmaier (1998), and Zorita
and von Storch (1999) each related circulation
conditions to regional rainfall conditions. Consequently,
these classifications are of little use to researchers
dealing with variables other than rainfall. Unless the
target variable is a general indicator of weather
conditions at the location of interest, classifications
derived using recursive partitioning will be not be usable
in the same manner as more general synoptic
climatologies.

The primary goal of the current study is the
development of an automated, supervised method for
producing synoptic map-pattern classifications capable
of resolving the main synoptic controls on surface
weather in a given region. It is intended that
classifications resulting from such a method could be
used as alternatives to manual classifications (Lamb,
1972; Muller, 1977; Hess and Brezowsky, 1977) or
automated, unsupervised classifications developed for a
specific region (Yarnal, 1993). To achieve this goal,
recursive partitioning trees are used to relate synoptic-
scale atmospheric conditions to a group of surface
weather-elements. Two model architectures are
investigated. In the first, principal component analysis
(PCA) is used to generate a one-dimensional index that
summarizes the surface weather-element variables.



This index is then used as a target in a standard
univariate regression tree built using the recursive
partitioning algorithm. In the second, atmospheric
circulation variables are related to the weather-elements
directly using a multivariate extension to the univariate
regression tree approach. The latter approach avoids
the loss of information resulting from the compression of
the weather-elements data down to a single variable.
The ability of each model to predict variations in the
weather-element data is evaluated and compared using
a cross-validation procedure. Results are measured

against those from an unsupervised map-pattern
classification based on the k-means clustering
algorithm.
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Figure 1. Map showing the grid-points used for the
atmospheric circulation data and the location of the
surface observation station.

2. DATA

2.1 Atmospheric circulation

Gridded SLP and 500-hPa geopotential height data
from the NCEP/NCAR model reanalysis project (Kalnay
et al., 1996) were used as inputs to the synoptic map-
pattern classifications. Daily averages from 1953 to
1998 were obtained for a region covering western North
America and the north Pacific Ocean (40°N-62.5°N;
157.5°W-110°W). Data were first smoothed spatially by
averaging the 2.5°x2.5° resolution grids (10x20) to
5°x5° grids (5x10). The spatial domain is shown in
Figure 1.

To reduce the impact of seasonal variability in the
magnitude of circulation data on the classifications,
moving average filters were applied prior to identification

of the map-patterns (Hewitson and Crane, 1992; Yarnal,
1993). For each day in the analysis, grid-point values
were expressed as deviations from a mean value
calculated using all data from the 13-days centered on
the day of interest. This form of filter preserves spatial
patterns in the data but removes variations in average
magnitude occurring on time-scales longer than 13-
days. The 13-day window was selected following
Hewitson and Crane (1992) and is based on power
spectra and correlograms of the daily SLP and 500-hPa
geopotential height time-series. The filter therefore
prevents classifications from being overwhelmed by
seasonal variations in average magnitude while still
capturing variability occurring on time-scales less than
the life-span of typical synoptic-scale systems (Hewitson
and Crane, 1992; Yarnal, 1993). Map-patterns that
reflect only gross seasonal features of the atmospheric
circulation are thereby avoided.

2.2 Surface weather-elements

Five variables were selected to describe surface
weather conditions in the vicinity of Vancouver, British
Columbia (Figure 1). Hourly observations of surface
temperature, dew-point temperature, percent cloud
opacity, wind speed, and wind direction were obtained
from Environment Canada for the monitoring station
located at Vancouver International Airport. These five
variables were chosen to reflect standard observations
reported by Environment Canada’s hourly airport
observing stations. Variables selected were similar to
those used in other studies that defined synoptic types
based on local airmass characteristics (Yarnal, 1993;
McGregor and Bamzelis, 1995; Kalkstein et al., 1996;
Greene et al.,, 1999). Local pressures at Vancouver
were excluded because gridded SLP data were a part of
the atmospheric circulation data set. This ensured that
the two sets of data were independent. For the
remaining variables, daily mean values for the period
1953-1998 were calculated from the hourly
observations. Mean wind speeds and circular mean
wind directions were converted into u and v wind
components (east-west and north-south respectively).
Similar to the filtering applied to the circulation data,
effects of seasonality were removed from the surface
weather-element data by expressing variables as
deviations from centered 13-day moving averages
(Yarnal, 1993).

3. METHOD
3.1 Recursive partitioning trees

Recursive partitioning trees are data-driven
statistical models capable of representing nonlinear and
interactive relationships between input variables and
one or more output variables. For a complete
description of the recursive partitioning algorithm the
reader is referred to Therneau (1983), Breiman et al.
(1984), and Therneau and Atkinson (1997). In this
study, two specific forms of recursive partitioning
models, univariate regression trees and multivariate



regression trees, are described. Burrows et al. (1995)
provide an excellent description of univariate regression
trees- recursive partitioning models with a single
continuous output variable- from a meteorological
forecasting perspective. Multivariate regression trees,
discussed by Yu and Lambert (1999), are a recent
extension to univariate regression trees that allow
multiple continuous output variables.
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Figure 2. Example of a univariate regression tree with
three inputs (X1, X2, and X3). Decision nodes are
marked with squares. If the decision rule at a given
node is true, cases follow the left branch; if false, cases
follow the right branch. The number below each terminal
node is the average of the output variable values (Y) for
cases assigned to that node.

The goal of the recursive partitioning algorithm is to
separate the input space in such a way that output
variable cases are placed into groups that are as
homogenous as possible. As shown in Figure 2, the
partition is represented using a tree-like structure. Inputs
to the model are presented at the top of the tree and
criteria determining which branch each case proceeds
to are made at decision nodes. Depending on whether
the criterion at the decision node is met or not, cases
either follow the left branch or the right branch down the
tree. Cases are assigned to classes based on the
terminal nodes they reach in the tree; each terminal
node defines a potential class in the synoptic
climatology.

Predicted output values for classes are also
assigned by the recursive partitioning model. Output
values for cases in terminal nodes are averaged; these
mean values are used as predictions for the classes. In
the univariate regression tree shown in Figure 2, for
example, a case with inputs X1 =1, X2 =2, and X3 =3
would yield a predicted output Y = 3.246, the mean
value of all cases assigned to that terminal node during
training. Counting from left to right, this case would be a
member of class 10. Residual errors associated with the
tree are given by the difference between the observed
outputs and the corresponding predicted value. If the
observed value were equal to 3, the residual error for
this example would be -0.246. In multivariate regression

trees, terminal nodes vyield predicted values for each of
the output variables.

Regression trees are built using an algorithm that
selects and creates decision nodes so that output
variable cases are placed into increasingly similar
groups. The decision rule at each new node is chosen
by iteratively searching through the input variables to
find the split that maximizes a measure of node
homogeneity. The splitting criterion SC is given by

SC =SSt —(SSL + SSR) (1)

where SSr is the sums-of-squares for the node (equal to
the summed residual error defined above), and SS; and
SSr are the sums-of-squares for the left and right
branches respectively. Choosing the highest value of
SC leads to the split that maximizes the sums-of-
squares between the new branches. In univariate trees,
errors are summed over cases of the output variable. In
multivariate regression trees, errors are summed over
cases of each output variable and then combined.

The algorithm that creates nodes is controlled by
two parameters: Ns, the minimum number of cases in a
node required to attempt creating a split, and N, the
minimum number of cases in a terminal node. By
default, the recursive partitioning algorithm sets Ns to 20
and N; to Ns/3. In synoptic climatological applications
where sample sizes are generally quite large, final tree-
structure is not very sensitive to these parameters;
changes are instead reflected in computation time.

New nodes are created until each terminal node
contains a minimum number of cases or no further splits
can be made because the splitting criterion has
converged. By default, tree size is not limited during the
initial fitting process; tree building continues until
terminal nodes have reached the minimum size defined
by Nt or SC has been maximized and no further splits
are possible. Since tree size is not limited, models may
overfit the training data used to grow the tree and may
not reflect the underlying relationships between inputs
and outputs. In the most extreme case, when N is set to
one and each case is allowed to reach its own terminal
node, the residual error of the tree on training data will
be zero. The model will have memorized both the
structure underlying the data and also noise;
performance of the model on data not used in the
building process may be poor as a result. As a remedy,
overfit trees are pruned by removing unnecessary
branches from the model, thereby reducing the number
of terminal nodes. The pruning step is very important in
synoptic climatological applications as the number of
terminal nodes determines the number of map-patterns.

The amount of pruning is determined by inspecting
out-of-sample estimates of model performance
calculated using cross-validation (Weiss and Kulikowski,
1991). In N-fold cross-validation, the available data are
first split into N equal size bins. Full trees are then built
using data from N-1 groups and residual errors for
pruned sub-trees are calculated using the data
remaining in the left-out bin. This procedure is repeated
N times for each sub-tree, rotating the training and left-
out bins at each fold of the cross-validation. The N error



estimates from cross-validation are then collected and
their mean and standard error SE values are computed
and stored. Following cross-validation, the cross-
validated errors for the pruned trees are plotted against
the number of terminal nodes. An example is given in
Figure 3; in this case, the error values plotted are
proportions of unexplained variance for the pruned
trees. As the number of terminal nodes initially
increases, cross-validated error typically decreases
quite rapidly. This is followed by a relatively flat plateau,
and, as overfitting of the training data occurs, a gradual
increase in cross-validated error. Trees that are close to
minimizing the cross-validated error (i.e. those along the
plateau in the plot) are likely to perform well on true out-
of-sample data. In practice, performance of these
models will be very similar; as a result, the simplest is
chosen for sake of parsimony.
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Figure 3. Example cross-validation error plot obtained
during the recursive partitioning procedure. Error bars
show +/- 1-SE. The minimum cross-validated error and
the error associated with the 1-SE rule are marked.

Objectively, the smallest tree that is within one SE
of the minimum is usually selected as the optimum
model (Therneau and Atkinson, 1997). The original tree
built using the full dataset is then pruned using this
criterion, commonly referred to as the 1-SE rule. In
Figure 3, for example, the minimum cross-validated
error is 0.67 with a SE of 0.03; the 1-SE rule would
select the tree with an error equal to 0.67+0.03=0.70, in
this case one with only 6 terminal nodes. In a synoptic
climatological context, however, the 1-SE rule may
select a tree with more nodes than can be easily
interpreted. Instead, the user can choose to prune the
tree to a smaller size, sacrificing model performance for
a more compact classification.

3.2 Synoptic map-pattern classifications

To generate the synoptic map-pattern
classifications, filtered SLP and 500-hPa geopotential
height data were used as inputs to univariate and
multivariate regression tree models. Following the

recommendation of McKendry (1994), data from both
atmospheric levels were considered simultaneously in
the classifications. Unlike previous studies which used
circulation PCs (Zorita et al., 1995; Zorita and von
Storch, 1999; Schnur and Lettenmaier, 1998), grid-point
data were used as model inputs in this study. As
recursive partitioning algorithms are able to handle large
data sets and are not sensitive to correlations between
inputs (Burrows et al., 1995), data compression and
decorrelation of inputs using PCA is not strictly required
prior to classification. In addition, McKendry et al. (1995)
suggested that map-pattern classifications based on
grid-point data can be applied to GCM scenarios with
greater ease than methods requiring a PCA pre-
processing step. Brinkmann (1999) found that
information necessary for adequate discrimination
between synoptic classes may be contained in higher-
order PCs not retained in the PCA. As a result,
classifications using original grid-point data may be
better than those using data reduction methods on the
circulation fields.

PCA was used to define an index summarizing
surface weather conditions in Vancouver. Scores on the
leading PC of the five filtered weather-element variables
were used as outputs in the univariate regression tree
model. The leading PC was calculated using a P-mode
PCA on the correlation matrix of the variables (Yarnal,
1993). Variance explained by the PC over the five
weather-elements was 42%, ranging from a minimum of
22% for the v wind component to a maximum of 68% for
dew-point temperature. The five filtered weather-
elements were used directly as outputs in the
multivariate regression tree. This avoided loss of
information due to reduction of the weather-element
data down to a single dimension.

Following preparation of the circulation data and the
weather-element index, univariate and multivariate
regression trees were used to generate the synoptic
map-pattern classifications. Default values of Ns and N
(equal to 20 and 7 respectively) were used in the current
study. Lowering values of the control parameters did not
affect the structure of the final pruned trees.

For comparison with the recursive partitioning
models, unsupervised synoptic map-pattern
classifications based on the k-means clustering
algorithm were also produced. Standardized values of
the filtered SLP and 500-hPa geopotential height data
were clustered using a batch k-means algorithm
(Anderberg, 1973). Cluster centers in the k-means
algorithm were initialized using the maximum-norm
procedure described by Katsavounidis et al. (1994).

To facilitate comparisons between the recursive
partitioning and benchmark models, the number of
classes was held constant in the current study. The
number of classes for all models was selected by
inspecting cross-validation error plots for pruned
recursive partitioning trees. In the following discussion,
univariate regression tree models are referenced as
URT, multivariate regression trees as MRT, and k-
means clustering models as KMC. Plots for the
recursive partitioning models are presented in the top
and bottom panels of Figure 4 respectively. For URT



and MRT models, the 1-SE rule selected 53 classes and
65 classes with cross-validated values of unexplained
variance equal to 0.585 and 0.728 respectively. Note
that values of unexplained variance reported in Figure 4
for URT and MRT models are not comparable. Values
for URT models are referenced against the leading
weather-element PC, not the full set of variables.
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Figure 4. Cross-validated errors for recursive
partitioning trees built in the current study. Results from
URT models are shown in the top panel and results
from MRT models are shown in the bottom panel.

As described above, the 1-SE rule can result in a
system with too many map-patterns to be of practical
use. This was true of the initial models built in the
current study. Instead, a cutoff value of 25 classes was
chosen for comparing the models. This provided
classifications of comparable size to well-known
historical synoptic climatologies (for example, 27
weather types by Lamb, 1972 and 29 classes by Hess
and Brezowsky, 1977). Also, while subjective, selection
of 25 classes lead to classifications that sacrificed little
performance relative to those selected using the 1-SE
rule. For example, the cross-validated error associated
with MRT models using 25 classes was equal to 0.756;
this represents a <3% increase in unexplained variance
relative to the model recommended by the 1-SE rule.

4. RESULTS

Synoptic classification performance was evaluated
using the method suggested by Yarnal (1993). Each
synoptic classifier was evaluated in terms of its ability to
predict values of the set of weather-element variables.
For each weather-element considered, observed values
were compared with values predicted by the synoptic
classifier. Mean values variables were calculated for
each of the classes in the worked synoptic climatology;
days assigned to a given class then used these mean
values for their predicted values.

In the current study, r* was used as the primary
measure of classification performance. Values of the
root-mean-squared error and the index of agreement
(Willmott, 1981) were also calculated, but are not
reported due to good agreement with r’. Relative
differences between the models were similar for the
three performance measures.

To obtain unbiased estimates of model
performance, 10-fold cross-validation was used to
calculate average r* values for the period of record.
Data sets were randomly split into 10 subsets of equal
size. Nine sets were used to generate the synoptic
classifications and the remaining set was used to test
model performance on data not used in model building.
Values of r* for the left-out set were recorded and the
procedure was repeated, rotating the subsets of data
used for training and testing. Reported values of r* are
means taken over the 10 test subsets. This procedure
reduces skill inflation resulting from the evaluation of
performance statistics within the data set used to build
the model and values are therefore lower than would be
expected if cross-validation were not employed. While
cross-validation estimates of classification performance
were evaluated in a similar manner as those used to
determine pruning of the recursive partitioning models,
the two procedures were conducted separately in the
analysis. Pruning cross-validation was conducted within
data reserved for model building and was used
exclusively to determine the appropriate number of
splits (and thus classes) in the synoptic climatology.

The cross-validation procedure was used to
compare the ability of each synoptic classification to
predict daily values of the five filtered weather-elements
over the period 1953-1998. Cross-validated values of r
for predictions of each weather-element are presented
in Figure 5. Bars show mean values reported over the
10 cross-validation trials; lines extend from the median
to show minimum and maximum values. For reference,
values of explained variance for the leading weather-
element PC are also reported.

Given that recursive partitioning models used
weather-element data as targets, regression trees were
expected to outperform the unsupervised k-means
algorithm model. URT and MRT models did indeed
perform better than the KMC model for all weather-
elements. Averaged over the five weather-elements, a
difference of 9% explained variance was noted between
the KMC and URT models. In no case were cross-
validated values of r* for the KMC model higher than
those reported for the URT model. Comparing the two



regression tree approaches, results for MRT models
were better than those for the URT models. MRT
models explained, on average, 3% more explained
variance than did URT models. In this case, the range of
variability over the cross-validation trials for the two
models did overlap.
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Figure 5. Mean cross-validated r* values for predictions
of the filtered weather-element data. Error bars indicate
the range of r* values obtained during cross-validation.
Values of * for the first weather-element PC are shown
in black for comparison.

5. DISCUSSION AND CONCLUSION

Recursive partitioning offers a powerful method for
generating synoptic map-pattern classifications. Since
classifications are conditioned on weather-element data,
resulting classes are more strongly associated with local
weather conditions than are automated classifications
based only upon synoptic-scale circulation data. In
addition, the modelled tree structure and predicted
values of the weather-elements can be used to help
interpret relationships between the synoptic map-
patterns and weather at the surface. Cross-validation
error plots generated by the recursive partitioning model
provide guidance for determining the appropriate
number of map-patterns, a decision that is often difficult
with standard unsupervised cluster analyses. While the
1-SE rule provides a simple, automated criterion for
selecting the appropriate nhumber of map-patterns for a
given dataset, this number can be excessive for large-
scale synoptic climatological analyses. Cross-validation
error plots can be used to gauge the effect of selecting
fewer classes than recommended by the 1-SE rule.

The success of map-pattern classifications
developed using recursive partitioning depends on the
method used to represent the weather-element data. In
the current study, weather-elements were represented
by the leading PC of the data in the univariate
regression trees and by the full set of variables in the
multivariate regression trees. As expected, results for
models conditioned on the PC were slightly worse than
those for models conditioned on the full set of weather-
elements. Compressing the weather-element data down
to a single variable resulted in a substantial loss of

information. For the dataset used in the current study
the leading PC explained only 42% of variance in the
original weather-elements. Despite the improved
performance of the MRT models, it is possible that
alternative means of representing the weather-elements
could lead to even better classifications using this
approach. For example, Yu and Lambert (1999) found
that the application of spline basis functions or PCA to
their ~multivariate response variables improved
performance of the resulting trees. Further work is
required to see if the same holds true for synoptic
climatological applications.

Classification results reported in the current study
are strictly valid only for the local region from which the
weather-elements are drawn. In this regard, the method
provides results that are most similar to manual synoptic
climatologies. For example, Maunder's (1968)
classification of surface weather maps in the Pacific
Northwest was based on links between synoptic
conditions and local weather conditions over Vancouver
Island. As a result, the classification was less relevant to
the interior regions of British Columbia and Washington.
The same is true of the classifications in the current
study. The fact that the method presented is automated,
however, means that it could be easily and quickly
applied to a variety of specific locations. Alternatively,
data from multiple stations could be combined to create
a classification system valid for a larger area.
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