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. INTRODUCTION 
Skill scores are commonly used in forecast 

erification as a means of comparing forecasts. 
ecause skill scores attempt to quantify a 
ultidimensional problem in a single dimension, skill 

cores are inherently problematic. They are, however, 
nlikely to be dropped from use. Skill scores are similar 

n many ways to Goodness-of-Fit (GOF) tests. In 
articular, observed discrete multinomial data can be 
ompared to a model via the GOF tests. Skill scores 
ompare categorical forecasts to baseline forecasts 
uch as chance, persistence or climatology, or the 
urrent operational standard.  

Read and Cressie (1988), hereafter RC88, have 
erived a generalized form for GOF tests. This 
eneralized form, called the power divergence family of 
tatistics, requires a parameter. This parameter is most 

mportantly the exponent of the ratio of counts. The work 
n GOF tests provides motivation for transformations 
pplied to skill scores, as described in section 2.1. 
ection 2.2 presents the three methods of 

ransformation that are applied to the skill scores. The 
ffect of exponentiation on skill scores derived from the 
x2 contingency table is investigated for two sets of 
orecasts, presented in section 3. The skill scores of 
nterest are listed in section 4. The results of the 
mpirical investigation of the effects of the 

ransformations on the data sets are presented in 
ection 5. Finally, section 6 offers conclusions and 
escribes future work. 

. MOTIVATION AND METHODS 

.1 Motivation 
 
It is well documented that all skill scores suffer 

rom some undesirable qualities (e.g. Marzban, 1998). 
he same is true of GOF tests. In fact, Cressie and 
ead (1984) say of GOF tests that there “is no uniformly 
referable test”. However, they also demonstrate that 
se of different exponents can mitigate some of the 
roblems associated with different tests. 

GOF tests, such as Pearson’s Chi-squared and 
reedman-Tukey, are generally used to explicitly test 

he hypothesis that multinomial data come from some 
pecified distribution. In order to conduct this test, the 
istribution of the GOF statistic must be known, at least 
symptotically. Skill scores, such as the Heidke Skill 
core (HSS) and True Skill Statistic (TSS), are used in 
uch the same way, to “test” if a forecast is “better” 

han some standard. However, this test is implicit. The 
chieved score is not compared to some distribution or 

 
standard to determine the outcome. Indeed, this would 
be impossible, as the distributions of the various skill 
scores are not even known. 

According to RC88, the general format for the 
Power Divergence family of statistics is: 
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The usual GOF tests are achieved by setting the 
parameter  λ to the appropriate value (e.g. for Pearson’s 
χ 2 ,  λ = 1; for the Likelihood ratio statistic G 2 ,  take the 
limit of PD as λ −> 0). The power divergence statistic 
seems to work well in a variety of situations when λ = 
2/3, as it provides a compromise between the most well  
known tests (RC88). For instance, the test maintains a 
balance between determining lack of fit yet remaining 
robust to a single cell departure. The test with this 
parameter also works in situations of sparse cell counts 
or finite populations. Additionally, the moments very 
closely match the asymptotically derived Chi-square 
moments. 
 The Oi  (Ei)  are the observed (expected) counts 
for the i t h  cell. The exponent λ is applied to the ratio of 
the observed counts to expected counts. The additional 
factor of Oi  can be interpreted as a weight for the ratio 
(RC88).  

The general format of skill scores is a ratio of 
differences (Stanski et al, 1989; Wilks, 1995). The 
numerator measures the difference between the 
forecast of interest and some reference forecast while 
the denominator measures the difference between a 
perfect forecast and the reference forecast. This formula 
involves the measure of the forecast to be evaluated 
(A), the measure of some reference forecast (Ar e f )  and 
the measure of a perfect forecast (Ap e r f ). These 
measures are combined as a ratio of differences, with 
the following formula: 
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The result is interpretable as a “percentage 

improvement” over the reference forecast (Wilks, 1995). 
However, comparing different skill scores for the same 
forecasts makes it clear that the “percent improvement” 
varies considerably depending on the score chosen. 

While GOF tests are equivalent except for the 
choice of exponent, this is not the case with skill scores. 
Instead, they differ in the quantities used to measure the 
forecast (A) and reference forecast (Ar e f ) .   

 

 



 

 

2.2 Methods 
 GOF tests involve only two sets of counts. Skill 
scores incorporate a third set of counts, those of the 
reference forecast. Therefore, adding an exponent to 
the ratio of two counts is not practical with skill scores. 
However, the numerator and denominator of the skill 
score are just adjusted counts, so the exponent can be 
applied to the entire skill score (SS). This method of 
transformation, S S λ , is hereafter referred to as method 
one. 
 Power transformations, including the natural 
logarithm, are useful for count data (Hoaglin et al, 
1983). Generally, counts and amounts are skewed, 
bounded below, and have long right tails. Additionally, 
the variability frequently increases as the count or 
amount increases (i.e. the data are heteroscedastic). 
Application of a power transformation can yield a more 
gaussian looking sample; one that is symmetric and/or 
homoscedastic.  
 A second method of transforming the skill scores is 
achieved by applying power transformations to the 
counts prior to computing the skill score. The square 
root and natural logarithm are most commonly used 
transformations for counts. Here we will investigate the 
properties of power transformations with exponents 
ranging from (0, 2] and the natural logarithm. 
 A third proposed method involves computing: 
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 For all methods, when λ = 1, the standard skill 
score is obtained. When the original skill score is 0, the 
transformation has no effect, so a no skill forecast is 
mapped to a no skill forecast by the transformation. 
These transformations apply only to positive skill scores, 
as taking non-integer powers of negative numbers can 

yield complex numbers, e.g. 1− . If transformations for 
negative scores were of interest, the transformations 
could be determined for the absolute values, with the 
negative sign replaced at the end.  

3. DATA 
Skill scores are computed on two sets of forecasts 

described in this section. Presented in Section 3.1 are 
the infamous Finley tornado forecasts that began the 
whole skill score debate over a century ago. Some 
model output statistics (MOS) precipitation forecasts are 
detailed in section 3.2. 

3.1. The Finley Tornado Forecast Data 
Three versions of the Finley tornado forecasts are 

considered, as reproduced from Stephenson (2000). 
The first table, 1a, contains the original Finley tornado 
forecasts. Table 1b has same forecasts “hedged” to 
achieve unbiased forecasts. Finally, table 1c contains 
random forecasts with the same marginal totals as the 
Finley forecasts.  

 In each of these tables, the counts in a single cell 
dwarf the other counts. This is characteristic of forecasts 
of “rare events”. This type of table causes much trouble 
for many skill scores. Analogously, some GOF tests 
behave poorly when the cell probabilities are unequal 
(Koehler and Larntz, 1980). 

Table 1a: Contingency table of Finley tornado forecasts. 

Observed  
Forecast YES NO Total 
YES 28 72 100 
NO 23 2680 2703 
Total 51 2752 2803 

 

Table 1b: Contingency table of unbiased or “hedged” Finley 
tornado forecasts. 

Observed  
Forecast YES NO Total 
YES 14 37 51 
NO 37 2715 2752 
Total 51 2752 2803 

 

Table 1c: Contingency table of random forecasts with same 
marginal totals as Finley tornado forecasts. 

Observed  
Forecast YES NO Total 
YES 2 98 100 
NO 49 2654 2703 
Total 51 2752 2803 

 

3.2. The Precipitation Data 
Tables 2a, b, and c present MOS precipitation 

forecasts as collapsed into 2x2 contingency tables. The 
original data are from Goldsmith (1990), but these 
contingency tables are reproduced from Wilks (1995).  

Table 2a: Contingency table of MOS Freezing Rain forecasts. 

Observed  
Forecast YES NO Total 
YES 50 162 212 
NO 101 6027 6128 
Total 151 6189 6340 

 

Table 2b: Contingency table of MOS Snow forecasts. 

Observed  
Forecast YES NO Total 
YES 2364 217 2581 
NO 296 3463 3759 



 

 

Total 2660 3680 6340 
 

Table 2c: Contingency table of MOS Rain forecasts. 

Observed  
Forecast YES NO Total 
YES 3288 259 3547 
NO 241 2552 2793 
Total 3529 2811 6340 

 

4. SCORES 
 Four skill scores are used in this analysis. They 
include the HSS, the TSS, the Gilbert Skill Score (GSS), 
and the Probability of Detection Skill Score (PODSS). 
Each of the four skill scores is computed from the cell 
counts in a contingency table. While several other 
measures can be computed from the contingency table 
counts, most do not follow the format of skill scores (e.g. 
CSI and FAR). They are therefore excluded from these 
analyses. 

Table 3: Contingency Table values used to compute skill 
scores. 

Observed  
Forecast YES NO Total 
YES a b a+b 
NO c d c+d 
Total a+c b+c n 

 
The formulas for the skill scores, expressed in 

terms of the cell counts in Table 3, are listed in 
equations 4 through 7 below. HSS is defined as  

( ) ( )( ) ( )( )( )
( )( ) ( )( )( ) ndcdbcaban

ndcdbcabada
HSS

+++++−
+++++−+

=  (4) 

The TSS does not precisely follow the formula for 
skill scores. Instead, the measure of reference used in 
the denominator is constrained to be unbiased (Ar e f ′ ) .  
When the forecast to be evaluated is unbiased, the TSS 
is equivalent to the HSS. 

( ) ( )( ) ( )( )( )
( ) ( )( ) ndbcan

ndcdbcabadaTSS
22 +++−

+++++−+= (5) 

The GSS ignores the cell count d, in an effort to 
prevent the score from being swamped by the very 
common non-rare event. 

( )( )
( ) ( )( ) ncabacba

ncabaaGSS
++−++

++−
=  (6) 

Finally, the PODSS is the standard Probability of 
Detection (POD) corrected by the number of correct 
forecasts expected based on chance (Schaeffer, 1990). 

It differs from (4) only by the subtraction of b from the 
denominator. 

 
( )( )

( ) ( )( ) ncabaca
ncabaaPODSS

++−+
++−

=  (7) 

5. RESULTS 
For each of the transformation methods described 

in Section 5, the scores are compared to the other skill 
scores computed for the same data and to the same 
skill score computed for the hedged and random data. 

5.1 Method One 
Method one is the simplest transformation of the 

skill scores as it consists solely of exponentiating the 
score. Figure 1 shows a graph of the GSS for the 
precipitation forecast data. The scores decrease from 1 
to 0 as the exponent increases.  

 

 
Figure 1: GSS transformed by method one for the 
precipitation forecast data. 

Graphs of the other scores and other data sets 
look similar, and have been excluded for the sake of 
brevity. This method does not seem provide any benefit 
over the original skill score. The exponent could, in 
theory, be chosen to make the score appear larger or to 
maximize the difference between the scores of different 
forecasts. 

5.2 Method Two 
Method two consists of applying power 

transformations to the contingency table counts before 
computing the skill score. Figure 2 shows a graph of all 
the scores plus the POD for the original Finley data (F), 
the square root of the Finely data (R), and the natural 
logarithm of the Finley data (L).  

For the Finley data, the transformations have little 
effect on the POD. However, the values of the different 
skill scores are closer (i.e. more consistent) when the 
transformations have been applied. It is important to 
keep in mind that the Finley forecasts are for a “rare 
event”. 



 

 

 
Figure 2: Skill scores for Finley’s tornado forecasts 
(F), their square root (R), and natural logarithm (L). 

 
In Figure 3, the effects of bias on the scores and 

transformed scores are illustrated. For all scores, the 
square root of the Finley forecast data (R) is closer to 
the score for the unbiased forecasts (U) than are the 
original scores (F). Taking the square root of the 
unbiased forecasts (S), however, has little effect, as 
these values lie very close to the unbiased forecasts 
(U). 

 

 
Figure 3: Skill scores for Finley’s original tornado 
forecasts (F), the unbiased version of Finley’s 
forecasts (U), and their respective square roots (R) 
and (S). 

 
Figure 4 shows the same graph for the snow data 

(S), along with its square root (R) and natural logarithm 
(L). For the snow data, the transformations have a 
bigger effect on all of the measures. For this data, the 
skill scores on the untransformed data were already 
fairly consistent, therefore the transformations do not 
seem to yield more consistent scores. The 
transformation also has the effect of lowering the 

scores. In practice, this transformation should probably 
include some constant term to adjust the result back to 
an appropriate level, serving the same purpose as the 
2λ/(λ+1)  term in the power divergence statistic. 

 
Figure 4: Skill scores for snow forecasts (S), their 
square root (R) and natural logarithm (L). 

 
Figure 5 shows the effect of transforming the cell 

counts of the original Finley tornado forecasts on each 
of the scores. Figure 6 shows the effect of transforming 
the cell counts of the snow forecasts on each of the 
scores. Clearly, the effect of the transformation depends 
very much on the original counts. For the Finley data, 
the transformations yield small changes in the scores for 
exponents in the interval [0.5, 1.5]. However, for the 
snow forecasts, the change is much greater for the 
exponent in the same interval.   

 

 
Figure 5:  Method 2 transformed skill scores for 
original Finley tornado forecasts. 

This transformation, with λ < 1, “brings in” the 
larger counts. This reduces the effects of rare events 
and bias on the scores. This transformation is monotone 
in some cases but not in others. This can be remedied 
by restriction of λ  to some interval around one. 



 

 

 
Figure 6: Same as figure 5 for snow forecasts. 

5.3 Method Three 
Method three applies equation (3) to the skill 

scores. When λ > 1, the skill scores can quickly get very 
large. However, for λ < 1, the differences in the scores 
are smaller. Figures 7 through 10 show the each of the 
four skill scores transformed by method 3 on the three 
versions of the Finley data.  

 
Figure 7: Method 3 transformed GSS for all versions 
of the Finley data. 

 
The GSS and PODSS graphs look fairly similar to 

each other, as do the HSS and TSS graphs. However, 
the GSS and PODSS are very different from the HSS 
and TSS graphs. The first two seem to maintain a 
roughly equal distance between the scores for the 
original and hedged forecasts in the interval [0.6, 1.5]. 
Additionally, these transformed scores are monotone 
decreasing on this interval. The HSS and TSS are near 
zero for λ > 0.5, but increase dramatically when λ > 1. 
For the first two scores, GSS and PODSS this 
transformation is well behaved if restricted to some 
interval around one. However for the HSS and TSS, a 
very small change in λ results in a very large change in 
the score. 

 
Figure 8: Method 3 transformed PODSS for all 
versions of the Finley data. 

 

 
Figure 9: Method 3 transformed HSS for all versions 
of the Finley data. 

 

 
Figure 10: Method 3 transformed TSS for all 
versions of the Finley data. 

 



 

 

6. CONCLUSIONS AND FUTURE WORK 
As with GOF tests, no skill score is preferable in 

all situations. Both GOF tests and skill scores can 
exhibit undesirable behavior when cell counts are too 
small, too large, or too different from each other. In the 
forecast verification situation, these types of cell counts 
are the only types of interest. (Equal cell counts would 
correspond to “coin flip” forecasts paired with an event 
that has a 50% climatological probability.)  

Restriction of λ  to some interval around one is 
necessary for all of the types of transformations 
attempted here. Some of the transformed scores are not 
monotonic near λ = 0.5. Others increase steeply when 
λ > 1. 

Method two has some nice properties when λ < 1. 
For example, the cell counts are brought closer to equal 
and the effect of bias o the score is reduced. For some 
of the forecasts, the power transformations have no 
effect on the resulting score. This method seems to 
yield more consistent results between the different 
scores in some cases. Previous research supports use 
of power transformations on count data. 

Method three is the most complicated of the three 
transformations. It does not seem to yield more 
consistent results between the scores. For some 
forecasts, the transformation yields extremely high 
values for some scores and very low values for other 
scores. This transformation has a very different effect on 
the GSS and PODSS than it does on the HSS and TSS.  
 For this study, all samples were large. The effect 
of transformations on smaller sample sizes should be 
assessed. A more mathematically rigorous examination 
of the properties of the various transformations on skill 
scores will be attempted. Additionally, the effect of using 
weights on ratios of counts should be investigated. 
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