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1. INTRODUCTION

Evensen (1994) proposed a Kalman-filter based
Monte Carlo approach that is potentially feasible for
large atmospheric and oceanic applications. This ap-
proach, termed an ensemble Kalman filter (EnKF),
uses a forecast model to integrate an ensemble of
model states from one analysis time to the next
and employs ensemble-based covariances in the anal-
ysis step. It is well suited for parallel computation:
each ensemble member can simply be integrated on
a different processor of a parallel computer (Evensen
1994, Keppenne 2000).

An efficient algorithm for the analysis step of the
EnKF was proposed recently by Houtekamer and
Mitchell (2001, hereafter HMO01). That algorithm
solves the Kalman filter equations by organizing the
observations into batches which are assimilated se-
quentially. The small (and noisy) background-error
covariances associated with remote observations are
filtered using a Schur (elementwise) product of the
covariances calculated from the ensemble and a cor-
relation function having compact support (Gaspari
and Cohn 1999). As in an earlier paper (Houtekamer
and Mitchell 1998, hereafter HM98), the algorithm
utilizes a pair of ensembles to deal with a problem of
inbreeding. Having two ensembles allows the Kalman
gain used for the assimilation of data into one en-
semble to be computed from the other ensemble. In
HMO01, the sequential algorithm was shown to be
computationally feasible for synoptic-scale analysis in
an operational context, if the required number of en-
semble members was O(100).

The purpose of this study is to test the sequen-
tial EnKF algorithm of HMO1 in a primitive-equation
context and to examine some of the issues that remain
regarding its suitability for operational atmospheric
data assimilation. In particular, the Kalman-filter
framework includes a model-error term and its proper
specification is crucial (Dee 1995). One focus of this
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study is how to account for model error in such a way
that the balance in a primitive-equation context be
maintained. A second concern relates to the use of
the Schur product for localization. Will this produce
imbalance in a primitive-equation context? Finally,
how will the required number of ensemble members
change as model-state vectors and numbers of obser-
vations approach values that occur in an operational
context?

2. EXPERIMENTAL ENVIRONMENT AND
REPRESENTATION OF MODEL ERROR

To investigate the three issues enumerated above,
the sequential EnKF of HMO01 has been used to as-
similate simulated radiosonde, satellite thickness, and
aircraft reports into a dry, global, primitive-equation
model. The model is a simplified version of the fore-
cast model used operationally at the Canadian Me-
teorological Centre (Coté et al. 1998). The version
of the model used here has 21 levels in the vertical,
includes topography, and uses a 144 x 72 horizontal
grid. (This implies a 2.5° grid spacing.) Our version
of the model employs the simple forcing and dissipa-
tion proposed by Held and Suarez (1994). In total,
about 80,000 observations are assimilated per day in
the data assimilation experiments.

A method of accounting for model error in
an EnKF context was proposed by Mitchell and
Houtekamer (2000, hereafter MH) and utilized in the
context of a 3-level quasigeostrophic model. Follow-
ing Dee (1995), the method involved parameterizing
the model error and using innovations to estimate the
model-error parameters. An ensemble of streamfunc-
tion realizations with the specified statistical struc-
ture was then generated and added to the ensemble
of model predictions, increasing the ensemble spread
so as to represent the effect of model error.

It is known (Cohn and Parrish 1991) that if the
model error is balanced then the Kalman-filter state
estimate will also be balanced. This result moti-
vates the approach taken in this study to extend
the method of MH to a primitive-equation context.
The method consists of parameterizing the model er-
ror, in terms of (i) a horizontal correlation function



having a characteristic length scale and (ii) a co-
sine expansion in the vertical. Such an expansion
is motivated by the cosine-like vertical structure of
solutions to the linearized primitive equations un-
der certain simplifying conditions (Simmons 1982).
An ensemble of streamfunction perturbations, with
this statistical structure, is now generated, as be-
fore. Each of these streamfunction perturbations is
then used to generate an (approximately) balanced
model perturbation, consisting of horizontal wind-
component (u and v), temperature (T"), and surface-
pressure (ps) perturbations. These perturbations are
derived from the streamfunction so that the relation-
ship between them is similar to that assumed for the
balanced component of the background errors in 3D
variational schemes (e.g., Parrish and Derber 1992).
This same procedure and statistical description are
also used for the generation of an ensemble of initial
guess fields. In this study, the model-error statistics,
like the observation-error statistics, are assumed to
be known. This eliminates the need to (adaptively)
estimate these statistics.

3. RESULTS AND CONCLUSIONS

A series of experiments is performed to examine
to what extent the localization used in the EnKF
produces imbalance. It is found that using a severe
localization in the EnKF would cause substantial im-
balance in the analyses, as expected. However, as
the distance of imposed zero correlation increases to
about 3000 km, the amount of imbalance becomes
acceptably small.

A series of 14-day data assimilation cycles is per-
formed with different configurations of the EnKF.
The effect of varying the ensemble size and the dis-
tance of imposed zero correlation are of particular in-
terest. The results are consistent with those obtained
in HM98 and HMO1. In particular, with respect to
ensemble size they clearly indicate the benefits of in-
creasing the ensemble size. With respect to localiza-
tion, the results indicate that for a given ensemble
size there is an optimal value of the localization pa-
rameter. The results indicate that the EnKF, with
2x 32 ensemble members, performs well in the present
context.

To investigate to what extent these encouraging re-
sults apply when real observations are assimilated, we
intend to combine the sequential EnKF with a more
complete version of the operational model. Model-
error simulation is expected to be important in such
an application.

Further details about the present study can be
found in Mitchell, Houtekamer, and Pellerin (2001).
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