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1. ABSTRACT

The National Weather Service (NWS) has been

requested by a variety of users to provide

hydrologic forecasts that explicitly account for the

uncertainty in a forecast.  A primary source of

uncertainty is the precipitation and temp erature

forecas ts us ed as  input  to pro duce hydr ologic

forecasts.  While several methods have been

explored for quantifying the uncertainty, it has been

found that ensemble methods best satisfy the

com plex  mix  of op eratio nal an d sc ientific

requ irem ents .  Pres ente d her ein is a n ens em ble

approach for generating hydrologic forecasts that

account for uncertainty in forecast precipitation and

temperature.  It uses existing NWS data streams

of quantitative precipitation forecasts (QPFs) and

observ ed prec ipitation, and is r elatively easy to

calibrate.  

2. INTRODUCTION

At the request of hydrologic forecast users, the

National Weather Service (NWS) has been

deve loping  technique s for  com puting pro bab ilistic

forecas ts wh ich as sess the  unce rtainty o f pos sible

events.  Numerous methods exist for computing

such forecasts and for communicating the

probabilities to a user.  The NW S has used the

method of ensembles for many years and finds

that this m ethod be st provide s for the a bility to

handle the varied hydrologic conditions across the

nation wh ile being the m ost am enable to

interfacing  with input m eteorolog ical foreca sts. 

There are two primary sources of uncertainty in a

river forecast: the future meteorological conditions

and the hydrologic modeling.  Both sources of

uncertainty must be addressed to effectively define

the p roba bility of f uture  even ts.  Th e foc us of  this

paper is generating ensembles of the

meteorological input variables to capture the 
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uncertainty in the forecast precipitation.  Additional

work is required to handle temperature forecasts.

A number of methods have been proposed for

computing the precipitation ensembles, and

several have been implemented into the NWS

operational software.  However, the existing

methods either apply to long range forecasts, or

require a substantial implementation effort.  The

NW S needs an effective method for computing

short term precipitation (and temperature)

ensem bles whic h can b e imple men ted eas ily. 

3. FORMULATION

3.1 Marginal Distributions

Let X  be the ob served  precipitation  amo unt with

realization x, and Y be the forecasted precipitation

amo unt with rea lization y.  Let fX be the density of

X and fY be the density of Y.  In order to account

for the probability associated with the observed or

foreca sted pre cipitation am ount bein g zero, de nsity

fX incorpor ates the D irac delta fu nction, *, 

(Edwards and Penney, 1994) as follows:

fX(x) = (1 - p0X)*(x) + p0XfXC(x | x > 0),

where p0X is the observed probability of

precipitation and fxc is the con ditional den sity

function  of X where x > 0.  Hen ce, the cumulative

distribution function, F, has the form

FX(x) = 1 - p0X + p0XFXC(x | x > 0)

where FXC is the conditional distribution function of

X where x>0.

The  forecas t prec ipitatio n den sity fY and cdf FY

have similar forms.  Figure 1 provides examples of

the cdfs FX and FY.    

3.2 Cha racteristics  of F

The b ivariate distribu tion function  F(x, y), with

marginals FX and FY, is an  intere sting  distrib ution  in

that both FX and FY have a discrete component

associated with the probability of no precipitation

and a continuous component associated with the

event that precipitation occurs.  This means that

there may be distinct probability that X is zero and



Figure 1: Example observed (black) and

forecasted (gray) cdfs with circles displaying

value of 1 - p 0.

Figure 2: Example of smoothed (black) and

unsmoothed (gray) probability of precipitation.

Y is positive a nd vice-v ersa.  An y metho d used  to

mod el F m ust be ab le to acco unt for this.    

3.3 Bivariate Normal Distribution M

The goal is to be able to compute the distribution

of X given some forecast Y = y.  To begin, variates

X and Y are transformed into normal space.  That

is, variates ZX and ZY are define d so that z X =      

Q -1(FX(x)) and zY = Q -1(FY(y)), where Q is the

standard normal distribution.  This transformation 

is referred to as the normal quantile transform, or

NQ T. N ext, th e den sity N(zX, zY) is modeled as

bivar iate norm al with  standard  norm al m argin als

and with parameter D, whic h is the Pearso n’s

correlation coefficient between ZX and ZY.  

3.4 Cha racteristics  of D

The c orrelation c oefficient D is dependent on the

spa tial scale of  the fo reca st, the  width  of the  time

interval of the forecast, and the lead time of the

forecast. Kelly and Krzysztofowicz (1997) have

also sho wn that D is the Spearman’s rank

correlation coefficient between X and Y in the

original space, and serves as a measure of the

skill of the forecaster, being 1 for a perfect forecast

and 0 fo r a com pletely unsk illed forecast.  

3.5 Conditional Distribution

Modeling N with a bivariate normal density allows

for the conditional density function fC(x | Y = y) to

be co mp uted  as the con ditional den sity NC(zX | ZY =

zY) which is known to be normal with mean : = DzY

and variance F2 = (1 - D2).  This form of the

distribution can be viewed as the climatology being

shifted by the information contained in the

forecast, so that as the skill of the forecast

decreases (i.e. as D goes to 0), the conditional

density NX|Y is just the marginal distribution F.

4. CALIBRATION

4.1 Smoothed Climatology

The distributions of observed and forecasted

prec ipitatio n am oun ts are  noisy a t the d aily tim e

step, meaning that the distribution for one day may

differ markedly from the distribution on the next

day.  T his is c aused by s evere sto rms pre sen t in

the historical record on only a few days, thus

skew ing the distrib ution for tho se days.  

Henc e, in order to  use the h istorical data  to

construct distributions Fx and Fy, the data is first

smoothed.  Three statistics are the object of the

smoothing: (1) the daily probability of precipitation

(p0X or p0Y), (2) the daily average of all non-zero

events (the conditional average or cavg), and (3)

the daily coefficient of variation of all non-zero

events (the conditional coefficient of variation or

ccv).  These three statistics are smoothed with a

three compo nent Fourier series, and then the cavg

and ccv are used to estimate a distribution, which,

when combined with p0X or p0Y, define Fx or Fy. 

Distributions currently used include the Gamma

and  the W eibull d istribu tions , both  desc ribed  in

Evan s et a l. (199 3), alth ough any r easonable

distribution is possible. Figure 2 provides an

example of smoothed probability of precipitation

data.

4.2 Calibrated Parameters

Calibration of this process consists of (1)



Figure 3: Example of the PQPF (gray line) and

computed ensemble points (gray circles)

relative to the distribution of observed

precipitation (black).

computing the smoothed daily statistics, as

described above and (2) computing the correlation

coefficie nt D between ZX and ZY.  The smoothed

statistics are then used at run time to estimate Fx

and Fy.  Although this is a large number of

parameters, since there are 365 sets of statistics,

they a re co mp uted  off-lin e prio r to fo reca st tim e

and the p rocess  is fully autom ated.  

5. APPLICATION

5.1 C ons truct ing an  Ensemb le

An ensemb le of p recip itation  am oun ts is

constructed using the climatological record, where

each year of data corresponds to one time series

in the ensemble.  For a given day and a given

year, k, the process is as follows:

1.  The year is ranked according to the amount of

precipitation that occurred on that day in that year

relative to other years.  For zero events, the ranks

are assigned randomly.  However, a “nearest

neighbor” technique is currently being researched

that will assign the ranks based on how “close” the

zero e vent is  to a no n-zer o eve nt, bo th tem pora lly

and  spat ially.

2.  The ye ar has a  probab ility, pK, ass igned  to it

based  upon its ra nk.  

3.  The year has a value for variate ZX assigne d to

it, which is computed as the inverse of the

conditional distribution of the density function NC, 

described in section 3.5, or zXK =  Mc
-1(pK ; :, F).

4.  The year has a precipitation amount assigned

to it by performing the inverse of the NQT, or        

xK = FX|Y
-1(pK) where FX|Y is the conditional

distribution function of X given Y = y computed as

FX|Y(x|y) = Mc(zx; :, F) .

Figure 3 is an example of a possible output PQPF,

prov iding the co mp uted  ense mb le poin ts as  well

as the historical distribution of observed

precipitation .  

5.2 Characteristics of this Ensemble Approach

By using the historical record to construct the

ensembles, the spatial and temporal

characteristics of the rainfall is captured.  For

examp le, if precip itation  over  two basins is hig hly

correlated, this  char acte ristic w ill be ca pture d in

the climatological record, so that the ensembles

that a re co nstru cted  will also  capture th is

characteristic.  Furthermore, by ranking the zeros

and shifting the entire distribution the intermittent

character of precipitation is preserved.  When

mo re rain  falls, it f alls on  mo re da ys and  not ju st in

larger amounts.

6. CONCLUSION

A new method for generating a PQPF has been

developed that depends only upon existing NWS

data  strea ms .  In addition , a new ensem ble

generation scheme has been developed that

effectively links the physical characteristics of the

loca l prec ipitatio n field s and  the s tatistic ally

generate d pre cipita tion amo unts .  A sim ple

calibration is required to extract parameters that

define the relationship between the observed and

the forecast precipitation.  The operational mode

then generates a PQPF, samples that PQPF, and

assigns values to the time series based on the

rank s of o bse rved  reco rd.  Pa per J P1.1 9 of th is

conference presents the results of an operational

dem onstration  of this app roach.  
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