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1. ABSTRACT

The National Weather Service (NWS) has been
requested by a variety of users to provide
hydrologic forecasts that explicitly account for the
uncertainty in a forecast. A primary source of
uncertainty is the precipitation and temperature
forecasts used as input to produce hydrologic
forecasts. While several methods have been
explored for quantifying the uncenrtainty, it has been
found that ensemble methods best satisfy the
complex mix of operational and scientific
requirements. Presented herein is an ensemble
approach for generating hydrologic forecasts that
account for uncertainty in forecast precipitation and
temperature. It uses existing NWS data streams
of quantitative precipitation forecasts (QPFs) and
observed precipitation, and is relatively easy to
calibrate.

2. INTRODUCTION

At the request of hydrologic forecast users, the
National Weather Service (NWS) has been
developing techniques for com puting probabilistic
forecasts which assess the uncertainty of possible
events. Numerous methods exist for computing
such forecasts and for communicating the
probabilities to a user. The NWS has used the
method of ensembles for many years and finds
that this method be st provide s for the ability to
handle the varied hydrologic conditions across the
nation while being the m ost amenable to
interfacing with input m eteorological forecasts.

There are two primary sources of uncertainty in a
river forecast: the future meteorological conditions
and the hydrologic modeling. Both sources of
uncertainty must be addressed to effectively define
the probability of future events. The focus of this
paper is generating ensembles of the
meteorological input variables to capture the
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uncertainty in the forecast precipitation. Additional
work is required to handle temperature forecasts.
A number of methods have been proposed for
computing the precipitation ensembles, and
several have been implemented into the NWS
operational software. However, the existing
methods either apply to long range forecasts, or
require a substantial implementation effort. The
NW S needs an effective method for computing
short term precipitation (and temperature)
ensembles which can be implemented easily.

3. FORMULATION

3.1 Marginal Distributions

Let X be the observed precipitation amount with
realization x, and Y be the forecasted precipitation
amount with realization y. Let fy be the density of
X and fy be the density of Y. In order to account
for the probability associated with the observed or
forecasted pre cipitation am ount being zero, de nsity
fy incorporates the Dirac delta function, 9,
(Edwards and Penney, 1994) as follows:

fx(X) = (1 - pox)B(X) + Poxfxc(X | x > 0),

where pyy is the observed probability of
precipitation and f,. is the conditional density
function of X where x > 0. Hence, the cumulative
distribution function, F, has the form

Fx(X) =1 - pox + PoxFxc(X | x> 0)

where F,; is the conditional distribution function of
X where x>0.

The forecast precipitation density fy and cdf Fy
have similar forms. Figure 1 provides examples of
the cdfs Fy and F,.

3.2 Characteristics of F

The bivariate distribution function F(x, y), with
marginals Fy and Fy, is an intere sting distrib ution in
that both Fy and F have a discrete component
associated with the probability of no precipitation
and a continuous component associated with the
event that precipitation occurs. This means that
there may be distinct probability that X is zero and
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Figure 1: Example observed (black) and
forecasted (gray) cdfs with circles displaying
value of 1 - p,.

Y is positive and vice-versa. Any method used to
model F must be able to account for this.

3.3 Bivariate Normal Distribution ®

The goal is to be able to compute the distribution
of X given some forecastY =y. To begin, variates
X and Y are transformed into normal space. That
is, variates Z, and Z, are defined so that zy =
Q'(Fy(x)) and z, = Q"' (F,(y)), where Q is the
standard normal distribution. This transformation
is referred to as the nomal quantile transform, or
NQT. Next, the density ¢(zy, zy) is modeled as
bivariate normal with standard norm al marginals
and with parameter p, which is the Pearson’s
correlation coefficient between Z, and Z,.

3.4 Characteristics of p

The correlation coefficient p is dependent on the
spatial scale of the forecast, the width of the time
interval of the forecast, and the lead time of the
forecast. Kelly and Krzysztofowicz (1997) have
also shown that p is the Speamman’s rank
correlation coefficient between X and Y in the
original space, and serves as a measure of the
skill of the forecaster, being 1 for a perfect forecast
and 0 for a com pletely unskilled forecast.

3.5 Conditional Distribution

Modeling ¢ with a bivariate normal density allows
for the conditional density functionfo(x | Y = y) to
be computed as the conditional density ¢(zx | Zy =
zy) which is known to be normal with mean p = pz,
and variance 02 = (1 - p?). This form of the
distribution can be viewed as the climatology being
shifted by the information contained in the
forecast, so that as the skill of the forecast

decreases (i.e. as p goes to 0), the conditional
density ¢y is just the marginal distribution F.

4. CALIBRATION

4.1 Smoothed Climatology

The distributions of observed and forecasted
precipitation amounts are noisy at the daily time
step, meaning that the distribution for one day may
differ markedly from the distribution on the next
day. Thisis caused by severe storms presentin
the historical record on only a few days, thus
skewing the distribution for those days.

Hence, in order to use the historical data to
construct distributions F, and F,, the data is first
smoothed. Three statistics are the object of the
smoothing: (1) the daily probability of precipitation
(Pox OF Poy), (2) the daily average of all non-zero
events (the conditional average orcavg), and (3)
the daily coefficient of variation of all non-zero
events (the conditional coefficient of variation or
ccv). These three statistics are smoothed with a
three component Fourier series, and then the cavg
and ccv are used to estimate a distribution, which,
when combined with pyy or pyy, define F, or F,.
Distributions currently used include the Gamma
and the W eibull distributions, both described in
Evans et al. (1993), although any reasonable
distribution is possible. Figure 2 provides an
example of smoothed probability of precipitation
data.

4.2 Calibrated Parameters
Calibration of this process consists of (1)
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Figure 2: Example of smoothed (black) and
unsmoothed (gray) probability of precipitation.



computing the smoothed daily statistics, as
described above and (2) computing the correlation
coefficient p between Z, and Z,. The smoothed
statistics are then used at run time to estimate F,
and F,. Although this is a large number of
parameters, since there are 365 sets of statistics,
they are computed off-line prior to forecast time
and the process is fully automated.

5. APPLICATION

5.1 Constructing an Ensemble

An ensemble of precipitation amounts is
constructed using the climatological record, where
each year of data corresponds to one time series
in the ensemble. For a given dayand a given
year, k, the process is as follows:

1. The year is ranked according to the amount of
precipitation that occurred on that dayin thatyear
relative to other years. For zero events, the ranks
are assigned randomly. However, a “nearest
neighbor” technique is currently being researched
that will assign the ranks based on how “close” the
zero event is to a non-zero event, both tem porally
and spatially.

2. The year has a probability, py, assigned to it
based upon its rank.

3. The year has avalue for variate Zy assigned to
it, which is computed as the inverse of the
conditional disfribution of the density function ¢,
described in section 3.5, or zy, = ®.(pk ; M, O).
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Figure 3: Example of the PQPF (gray line) and
computed ensemble points (gray circles)
relative to the distribution of observed
precipitation (black).

4. The year has a precipitation amount assigned
to it by performing the inverse of the NQT, or

Xk = FX|Y'1(pK) where Fy is the condtional
distribution function of X given Y = y computed as
FX|Y(X|y) = q)c(zx; M, 0) .

Figure 3 is an example of a possible output PQPF,
providing the computed ensemble points as well
as the historical distribution of observed
precipitation.

5.2 Characteristics of this Ensemble Approach
By using the historical record to construct the
ensembles, the spatial and temporal
characteristics of the rainfall is captured. For
example, if precipitation over two basins is highly
correlated, this characteristic will be captured in
the climatological record, so that the ensembles
that are constructed will also capture this
characteristic. Furthermore, by ranking the zeros
and shifting the entire distribution the intermittent
character of precipitation is preserved. When
more rain falls, it falls on more days and not just in
larger amounts.

6. CONCLUSION

A new method for generating a PQPF has been
developed that depends only upon existing NWS
data streams. In addition, a new ensemble
generation scheme has been developed that
effectively links the physical characteristics of the
local precipitation fields and the statistically
generated precipitation amounts. A simple
calibration is required to extract parameters that
define the relationship between the observed and
the forecast precipitation. The operational mode
then generates a PQPF, samples that PQPF, and
assigns values to the time series based on the
ranks of observed record. Paper JP1.19 of this
conference presents the results of an operational
demonstration of this approach.
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