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1. INTRODUCTION

The ensemble Kalman filter (Evensen 1994) pro-
vides a frame work for the description of the error
statistics as they occur in a data-assimilation cycle.
The error statistics at any phase of the cycle can be
estimated from an ensemble of model states. If the
different members of the ensemble are supplied with
random realizations of the observational and model-
ing error (Mitchell and Houtekamer 2000), the en-
semble statistics should be representative of the ac-
tual ensemble mean error. Our working hypothesis
is that an appropriate statistical description of the
sources of error can, and will, indeed be found. In
that case, the ensemble Kalman filter can be used
as a tool to simulate the impact of changes to the
observational network. The improvement due to ad-
ditional (hypothetical or real) data can then be esti-
mated from the corresponding decrease in ensemble
spread when two simulations with and without the
additional observations are compared. Thanks to the
large number of ensemble members (as compared to
using a single realization) statistically significant con-
clusions could be obtained from the evaluation of a
small number of cases.

2. A PERFECT-MODEL EXPERIMENT

We use the data-assimilation algorithm proposed
by Houtekamer and Mitchell (2001) in the context of
a dry low-resolution version of our center’s primitive
equation model (Coté et al. 1998). The model uses 21
levels in the vertical and a 144 x 72 horizontal grid.
It is forced as in Held and Suarez (1994), but includes
a realistic topography. As motivated in Houtekamer
and Mitchell (1998), a pair of ensembles is configured
so that the assimilation of data using one ensemble
of short-range forecasts employs the weights calcu-
lated from the other ensemble of short-range fore-
casts. Here a pair of two 32-member ensembles is
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used. For an initial experiment, we use simulated re-
ports from radiosondes and aircraft as well as satellite
thicknesses. It is assumed that the forecast model is
perfect.

It is observed that, even with this fairly basic ob-
servational network, very low error levels can be ob-
tained. In fact, error levels are lower by an order
of magnitude than those typically observed for op-
erational data-assimilation systems when comparing
with real data. The impact of the observations is
much bigger at 0 and 12 UT than at 6 and 18 UT,
which suggests that such low error levels could have
been obtained using radiosonde observations only.
This implies that, if our model is indeed perfect, the
atmospheric flow can be determined accurately, given
the current network of radiosondes and an ensemble
Kalman filter with 2 x 32 members.

3. GROWTH OF ERRORS

The growth rates of errors, due to the internal dy-
namics of the model, have been determined for a
number of generations of the ECMWEF operational
forecast model (Simmons et al. 1995). The growth
rates are seen to increase as an unavoidable conse-
quence of the development of a more active and real-
istic forecast model.

To determine growth rates for the model used here,
a number of 14-day integrations were performed. No
data were assimilated, so that the differences be-
tween ensemble members grew only in response to
the model dynamics. After some initial adjustment,
during which perturbations actually became smaller,
the differences between the ensemble members were
observed to grow at an unexpectedly modest rate.
At no size of the errors were the growth rates com-
parable to the rate at which true forecast errors (i.e.,
when comparing an integration with verifying analy-
ses) grow in our center’s operational forecast model.
The modest growth rate may well be responsible for
the low simulated error levels in the perfect-model
experiments. If errors do not grow at a realistic rate
in our simulation, they will be unrealistically small
and consequently one will arrive at overly optimistic



conclusions about the quality of the forecasting sys-
tem.

To analyze this further, growth rates were also
computed for the model, with the same Held-Suarez
forcing as before, on a 400 x 200 horizontal grid. This
led to a significant, but insufficient, increase of the ac-
tivity of the internal dynamics. A subsequent signif-
icant, but still insufficient, increase was obtained by
replacing the Held-Suarez forcing with the physical
parametrizations used in the operational model of our
center. It is concluded that no model, available to us,
is capable of simulating the growth of true forecast
errors, if it is used with the perfect-model assump-
tion. In other words: in order to obtain a realistic
simulation of the error levels in a data-assimilation
cycle, it will be necessary to account for the model-
error component.

4. CONCLUSION

It was found that low-resolution dry dynamics ac-
count for only a fraction of the error growth processes
in the numerical weather forecasts. It is necessary
to introduce an additional error source term to ac-
count for model error (e.g., Dee 1995; Mitchell and
Houtekamer 2000). Such a term will have to be care-
fully estimated using innovation statistics.

If indeed it is possible to obtain a realistic sim-
ulation of the errors in an environment with (i) ra-
diosondes, (ii) a fairly simple forecast model, and (iii)
a parametrized forecast model error, one may hope to
be able to also evaluate the impact of different com-
ponents of the observational network as originally in-
tended.

The introduction of a well-calibrated model-error
term, and the resulting realism of the background
error statistics, is also of critical importance for the
current project that aims at implementing an opera-
tional ensemble Kalman filter at the Canadian Mete-
orological Centre.

A more extensive report on these experiments
can be found in Mitchell, Houtekamer and Pellerin
(2001).
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