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1 INTRODUCTION

The need for operational weather prediction systems to
produce accurate forecasts of numerous surface quan-
tities in real time at thousands of locations all around
the globe, has for a long time now required the ef-
ficient automation of this task. Starting in the '70s,
objective statistical methods have been developed to
"interpret” the output of numerical weather prediction
(NWP) models, whose cornerstones may be identified
as the perfect prog and model output statistics (MOS)
techniques (Glahn and Lawry, 1972). It has become
common for the weather service and other weather pre-
diction centers to rely especially on MOS techniques.
A long history of observations of the parameters that
are to be forecasted, and of model output valid at the
time when the former were observed, are matched and
a statistical model is fitted, often consisting of a multi-
ple linear regression. When the forecast is needed, the
model output valid at the forecast time is combined
according to the statistical model developed, whose
coefficients are estimated by the history available (see
Glahn et al., 1991, Vislocky and Fritsch, 1995 and
Wilks, 1995 for an overview of current research and
additional references on MOS). There are several short-
coming to this approach, that we list in detail in Sec-
tion 2. They all relate to the "frozen quality” of the
long history required to estimate MOS parameters.

In an operational system developed by the Research
Applications Program at the National Center for At-
mospheric Research (Mahoney, 2001a and 2001b) an
attempt to deviate from the MOS paradigm has been
proposed and the skill of the system’s forecasts suc-
cessfully verified with respect to the traditional MOS
approach. In a nutshell, a continuously updated MOS
relation is estimated on the basis of recent history at
the station where the forecast is needed. This approach
requires recent observations and matching model out-
put in a number sufficient to estimate a stable statis-
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tical relation. For operational purposes "sufficient” is
currently identified by one hundred days’ worth of data.

Together with the advantages offered by this ap-
proach, however, several problems arise, and we pro-
pose to obviate them by what we call spatial com-
position of observations and model output. Very re-
cently, sophisticated hierarchical state-space models
have been developed in the area of weather prediction,
whose skills have been amply demonstrated (Wikle et
al., 1998, Nott et al., 2001). However, the estimation
of their parameters requires complex and lengthy Mon-
tecarlo simulations, a luxury we cannot afford when
developing large scale, operational, real time products.
Section 3 details what we mean here by spatial com-
position, and explains why we think that, even in its
simplicity, it may be effective in addressing the prob-
lems pointed out for MOS.

Section 4 describes the specific ingredients of our
analysis: the spatial domain under study, the quanti-
ties to forecast, the models whose output is used in the
prediction stage. Also the explanation of the verifica-
tion methods adopted can be found there. Section 5
summarizes and discusses the results. Conclusions and
proposed future directions follow in Section 6.

2 MOS AND DYNAMICALLY UP-
DATED MOS

The goal of MOS methods is to to estimate a robust
relationship between the quantities computed by a nu-
merical model and the weather parameters to be pre-
dicted, on the basis of a history of such data. The
relationship is usually defined for a specific location
and season. It is immediately clear how the necessity
of "historical data” for both model and observed quan-
tities introduces a rigidity that may be counterproduc-
tive: Numerical models undergo a constant refinement,
in terms of resolution (spatial and temporal) and pa-
rameterization. Thus, the values of a specific quantity
in the model output may be regarded as the realization
of a process that is by no means stationary over the
years of the model operation, and whose relation with



the quantity to be predicted is not as stable as its esti-
mation "once and for all” may imply. Also, new models
are put into operation, for which the history necessary
to develop MOS equations is simply not available, un-
til enough operational time has been logged. It may
also be argued that averaging the relation between a
forecast quantity and model quantities over a long his-
tory of seasons may wash out low frequency variations
underlying many physical processes. For example, ef-
fects of current ENSO signals, for example, may be
lost when applying laws whose coefficients have been
statistically determined by averaging conditions over a
large number of seasons.

For all these reasons, an appealing alternative con-
sists of recursively estimating a new relation between
predictand (observed) and predictors (model output)
at a specific site by "looking back™ at a recent history.
On the basis of these recent data points a regression is
dynamically estimated and updated.

A dynamic MOS system like this has been devel-
oped at NCAR and tested over thousands of sites, for
forecast times out to three days and predictions of the
following list of weather parameters like max and min
temperature, probability of precipitation in 3, 6 or 24
hrs intervals, amount of precipitation in 3 and 6 hrs in-
tervals, temperature and dew point temperature, v and
v wind components and speed. For each forecast time,
parameter and site a linear regression is estimated on
the basis of the most recent 100 days’ worth of data.

The system is not without pitfalls, however. Because
of failures in recording observations or in model runs,
the history may be incomplete and the resulting num-
ber of degrees of freedom for estimating the regression
coefficients may be insufficient. Also, when trying to
estimate "rare events” like precipitation (especially at
certain locations) or extreme conditions, the sampling
at a single location may not provide enough instances
of those events. The length of the time window, fixed
at 100 days somewhat arbitrarily, may also introduce
spurious seasonal signals in the relation estimated by
the regression. It is especially true for some parts of the
year and some geographical areas that climatic condi-
tions vary dramatically in a 100 day span. A shorter
time window may be less prone to register deeply dif-
ferent conditions, but it may not be adequate for the
parameters of a multivariate regression to be accurately
and robustly estimated.

Another limiting aspect of this approach has to do
with fitting the regression to the single site. It is to be
expected that higher and higher resolution NWPs, or
regionally nested models, will be able to produce pre-
dictors at grid points of interest where no observation
is available. The single site approach may only produce
a forecast at these points by some kind of interpolation

of either the observed quantities at surrounding sites or
directly from the forecasted quantities at surrounding
sites. We will see in the next section that the idea of
spatial composition may offer an alternative solution
to this problem as well.

3 WHO IS NEIGHBOR OF WHOM

Spatial composition consists of estimating the regres-
sion between predictand and predictors over a neigh-
borhood of sites. By compounding contemporary ob-
servations at different sites we may be able to shorten
the time window and still sum up enough data points to
robustly estimate the parameters of a multivariate re-
gression. The neighborhood can be defined by several
alternative criteria. We may call neighbors, alterna-
tively:

1. Sites within a specified distance of each other.
Distance here is simply Euclidean distance com-
puted with respect to latitude/longitude coordi-
nates.

2. Sites whose latitude and elevation are not "too
different” with respect to the quantity to be pre-
dicted.

3. Sites whose climatology hints at common dynam-
ics operating with respect to the quantity to be
predicted.

More specifically, since we are going to test this idea
in the prediction of maximum temperature (maxT) and
daily probability of precipitation (PoP), the definitions
become:

o With respect to definition 1 and for both types of
prediction (maxT and PoP) the radius varies over
1.5, 2, 5, 8, 10 degrees.

o With respect to definition 2 and for prediction of
maxT, neighbors are those sites within 2 degrees
of latitude and 250 meters elevation.

e With respect to definition 3 and for prediction
of PoP, neighbors are sites whose climatology is
within a certain range of variations of PoP. Pre-
cisely, sites are taken to be part of the same neigh-
borhood if the pair PoP, APoP between them cor-
responds to one of the rows in Table 1. We use
a twenty-year climatology to evaluate these quan-
tities for each site and form the neighborhoods
accordingly. The rationale behind the rules in Ta-
ble 1 is to account for the rarity of precipitation
at certain sites, and the more common occurrence
at others. The more usual precipitation is as an
event, the more flexible can be the definition of



Table 1: Given a certain value of PoP p at station
A, station B belongs to A’s neighborhood if its value
of PoP is within a certain range Ap, established as
a function p. The first column of the table lists the
intervals for p and the corresponding values of Ap
are listed in the second column

P Ap

< 7% 1%
% —18% | 2%
18% — 30% | 3%
30% — 46% | 4%
46% — 56% | 5%
56% — 68% | 6%
> 68% 8%

similarity among sites, as reflected by the larger
size of the interval for sites that register precipita-
tion more commonly. This can also be seen as a
reflection of hypothesizing a bernoulli distribution
for the occurrence of precipitation, whose variance
is a function of the value of the probability of a
positive event.

As said before, the expectation is that by combining
observations and predictors from several sites we can
get away with a shorter time span of data, thus avoid-
ing seasonal signals; we can collect more observations
of rare events (e.g precipitation occurrence); and we
can provide a set of estimates of regression parameters
that could be used for sites within the neighborhood at
which predictors values are available but observations
are not. As mentioned in Section 2 this is likely the
case when "sites” are in fact points on a regular grid
at which model output is available but where there is
no recording station. No interpolation is needed here,
since the values of the predictors at the "missing sta-
tion” site are fed to the regression coefficients that
have been estimated for its neighborhood.

4 DATA AND METHODS

Figure 1 shows the data sites used in the experiment.
We apply the idea of neighborhoods (in its different
incarnations as explained in Section 3) to each one
of the sites, for both maxT and PoP prediction,
for lead times of one and two days, and for four
different NWP model outputs (AVN and ETA mod-
els, output produced at 0 and 12 UTC). Details on
the models and their parameterizations can be found at

http://weather.unisys.com/model/details.html.

For the prediction of maxT a multivariate linear re-
gression is fitted between observed maxT at the site(s)
and model output values. For PoP we use a multi-
variate logistic model (McCullagh and Nelder, 1983).
See the Appendix for a list of the predictors in the
regressions. We need to address the issue of overfit-
ting, which arises when a multivariate model with a
potentially high number of predictors is to be fitted
to a limited number of observations. Our choice is to
first rank the potential predictors by decreasing abso-
lute value of their correlation with the predictand, and
then choose the first n/20 predictors as terms of the
regression, where n is the total number of data points
available for regression estimation. We also cap the
number, allowing no more than ten predictors in the
regression. This is important in that we are going to
estimate the performance of the different models by
the mean square error (MSE) computed on a set of
data points kept aside in the stage of parameter fit-
ting. Overfitting of the training set by estimating a
regression model with a large number of terms is a
clear and present danger, and translates into very poor
out-of-sample performance.

Figure 1: The sites whose observations consitute the
predictand values in our dataset. Model output —
constituting the predictors set — has been interpo-
lated to the sites’ location. The sites indicated by
a circle are used for the experiment on the spatial
vs. temporal window’s relevance for MSE control.



We perform the out-of-sample exercise in two re-
spects. We divide the data available at the site for
which predictions are to be evaluated into a training
set (in sample) and a test set (out of sample). We in-
clude the former in the estimation (together with con-
temporary observations from the neighborhood) but we
evaluate performances only on the latter. This is what
we mean by "train-test verification”. Alternatively, we
leave the observations at the site out of the estimation
altogether, and still evaluate the prediction at the site
on the test set. This way we mimic the case where a
site provides predictors but no observed values of the
predictand. This is defined as " leave-site-out verifica-
tion”.

5 RESULTS

We present results in the form of boxplots of MSE
(also defined Brier score when a probability forecast is
concerned) for the two forecasted quantities (maxT or
PoP), four types of model output (AVN and ETA at
0Z, AVN and ETA at 127), and two lead times (one
or two days ahead). These boxplots represent the dis-
tribution of MSE over a number of sites that varies
between 35 and 40, since for some combination of the
above factors (quantity, model, lead time) a few sites
do not have enough data points to be considered for
the single site regression, which is our benchmark in
assessing the performance of the different definitions
of neighborhood.

For each site we keep out of the training set the
last 30 days of available history. The remaining 100
data points are either used for estimating the single
site regressions, or combined with the contemporary
data points at neighbor sites. Once the regression pa-
rameters are estimated, the 30 points that have been
left aside are predicted upon, and the resulting MSE
computed. In the case of the leave-site-out verification
the 100 points for the site in exam are not included in
the training set. The MSE is always computed on the
same most recent 30 days of history. This particular set
of results was obtained at the end of September 2001,
with observations and model output spanning the most
recent 4 months.

Notice how quite consistently across the different
panels in Figure 2 through Figure 9, the boxplot trend is
parabolically shaped, with a minimum that corresponds
to the regression estimates resulting from pooling to-
gether sites within five to eight degrees distance. This
result provides an indication that, at least on average,
something is to be gained by simply adding observa-
tions from other sites, all other factors being equal, up
to a certain distance. Beyond this point we are proba-
bly introducing noise rather than useful information in

the regression. Here we present only plots for one day
ahead prediction. Two days ahead predictions show
the same kind of trend.

eta00 day1, maxT

°
°

| DHpSSL

T T T T T T T
single distL5 dist2 dists distg dist10 lat.elev

Figure 2: Distribution of MSE for maxT (computed
at each site over 30 point predictions) over the sites
of Figure 1. ”Single” corresponds to single-site re-
gression, “dist1.5” through “dist10” correspond to
regressions trained over neighborhoods of radius 1.5
through 10 degrees. "lat.elev” corresponds to regres-
sions trained over neighborhoods defined in terms of
latitude and elevation differences (see text). One day
lead time. ETA model output at 0 UTC.
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Figure 3: As in Figure 2. ETA model output at 12
UTcC.
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Figure 4: As in Figure 2. AVN model output at 0
UTC.
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Figure 5: As in Figure 2. AVN model output at 12
UTC.
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Figure 6: As in Figure 2, for PoP, one day lead
time. 7climo” corresponds to regressions trained
over neighborhoods defined by Table 1 in text. ETA
model output at 0 UTC.

etal2 day1, pop24

B

o
8

° i

— ° —= : : i :

B —_ 8 —_
. . . . . . .
single distl.5 dist2 dists dist8 dist10 climo

Figure 7: As in Figure 6, ETA model output at 12

UrTcC.
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Figure 8: As in Figure 6, AVN model output at 0

UrcC.
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Figure 9: As in Figure 6, AVN model output at 12

UTC.



We now turn to the exercise in leave-site-out verifica-
tion. Figure 10 shows some results specific a particular
site and the prediction of maxT. The predicted val-
ues of maxT are here plotted against the true values.
Those pertaining to the site left out of the training set
are indicated by dark crosses in the plots. The cloud of
light shaded dots represents the (true,predicted) pairs
of the training set. The prediction quality is summa-
rized in the value of the MSE at the top of each panel
('mseis’ for the training set, ‘'mseos’ for the test set)
and seems to improve as we add points to the training
set by enlarging the neighborhood around the station,
as indicated by the title and the 'thicker and larger’
cloud of dots. The line in the plots is the 45 degree
line, the reference line where the dots and crosses would
lie in case of perfect prediction. Such results are com-
mon across the majority of sites and all combinations
of factors, again, but we cannot show more examples
because of limited space. THere are a few cases where
adding more sites does not improve the forecast, and
we show one of them in Figure 11, but the majority of
cases is exemplified by Figure 10.

As for the relationship between length of time win-
dow and size of neighborhoods, Table 2 exemplifies the
findings of the following exercise, applied to all combi-
nations of factors. For six sites, located across the area
under study and labeled by circles in Figure 1, we vary
the size of the neighborhood by adding one station at
a time, closest first. Along the other dimension, for a
given set of neighbors we vary the number of days in-
cluded in the training set, from two weeks to 90 days.
For each combination the MSE is computed on the -
by now famous - 30 days kept out of the training set
(because of space limits here we show only a subset of
rows from the original table, i.e. several stations are
added when comparing one row to the following).

The results in the table — again indicative of more
general results — indicate the necessity of including
at least 30 days to reach a one-digit-value of MSE.
Once this number of time-data points is included, im-
provement can be achieved by keeping the neighbor-
hood small and augmenting the data history, but even
smaller values of MSE can be achieved by extending the
training to sites farther away. After a certain point,
enlarging the neighborhood doesn’'t seem to provide
better forecasts, while increasing the time series length
does continue to lead to improvements. It is possible to
regard this result as a promising one. In cases when we
want to use a recently introduced model or a recently
recording station, the possible unavailability of a long
history seems to be counteracted by the availability of
data in a neighborhood.

Table 2: Values of MSE for out-of-sample prediction
of mazxT at a specific site. The spatial dimension
varies vertically, the time span of the data used for
the regression varies orizontally. The values along
the row labelled 0 are derived from the single site
regression.

time span of data (days)
distance (deg) | 14 | 21 | 30 | 45 | 60 | 90 |
0 43.6 | 34.6 | 31.3 | 21.0| 11.0 | 9.3
1.1 414 46.1 | 19.2 | 11.1 | 10.2 | 9.7
2.2 32.626.9(16.2|10.5| 9.8 |94
3.3 242 9.7 | 6.1 74 | 6.8 | 6.6
3.8 2761103 | 68 | 7.2 | 6.6 | 6.3
4.9 15.2] 9.5 | 106 | 6.5 | 5.9 | 5.6
7.1 159 |11.0| 9.5 | 6.1 54 | 5.0
7.9 14.7 | 15.1 | 9.1 6.2 | 5.5 | 5.1
9.5 155|148 92 | 6.5 | 59 | 5.3

6 CONCLUSIONS

It may have been more interesting to see dramatic and
robust differences in the optimality of the definitions of
neighborhood for different sites, but it is certainly op-
erationally easier to handle if the analysis suggests that
a single definition of neighborhood may improve pre-
dictions fairly consistently over a large spatial domain.
Specifically, our analysis seems to indicate that a neigh-
borhood of sites within 5 degrees (approximately 500
kilometers) may provide useful information for fitting
regressions of maxT and PoP in order to forecast these
quantities out to 24 or 48 hours. We also found that
to a certain degree one may trade-in historical informa-
tion for spatial information, and maintain a small mean
square error of the prediction. There are a large number
of caveats, however, and a correspondingly large num-
ber of questions deserving further investigation. Our
study has been limited with respect to the geograph-
ical area and season considered, quantities predicted,
and lead time of the prediction. We are going to ad-
dress all these issues in future work, where different
seasons and forecast quantities, and long-term predic-
tion as well as short-term will be studied. In addition,
other areas of the globe will constitute new test cases.
For now, we anticipate that the results we found by
'randomly’ choosing this particular season and by pre-
dicting maximum temperature and probability of pre-
cipitation at numerous sites over a geographical terri-
tory that is quite diverse, are representative of a larger
set of circumstances.
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Figure 10: Prediction at one site by a regression es-
timated only on its neighbors. The larger the neigh-
borhood the better. Fitted vs true values of maxT.
See text for details.
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Figure 11: Like Figure 10. But in this case enlarg-
ing the neighborhood does no good, it actually dete-
riorates the prediction.

APPENDIX

List of predictors used in the regression of maxT. Many
of them are to be considered as predicted by the NWP
model at forecast time plus 6, 12 and 24 hrs earlier.
The same is true for the predictors in the second list.

e temperature at surface, 925 mb, 700 mb;

e thickness 1000 - 700 mb, 850 - 700 mb;

e temperature difference 900 - 700 mb;

e u,v component of wind at 10m above surface;
e windspeed difference 1000 - 950 mb, 900 - 850 mb;
e cloud cover;

e relative humidity;

o latent/sensible heat flux;

e temperature advection 925mb;

e surface pressure;

e sin/cos of Julian day of the year.

List of predictors used in the regression of PoP.
e mean u,v component of wind 1000 - 700 mb;
e mean vertical velocity 850 - 500 mb;

o relative humidity;

e mean relative humidity 850 - 700 mb;

e precipitable water;

e Ghr probability of thunder;

e 24hr probability of precipitation;

e moisture advection at 925 mb;

e 24hr total precipitation accumulation;

e 24hr convective precipitation;

e 24hr stratiform precipitation;

® 24hr maximum CAPE;

o 24hr maximum CIN.
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