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1 INTRODUCTION

Automated forecasting systems often can create several
forecasts of the same weather parameter (e.g. by gen-
erating linear regression equations to predict maximum
temperature based on the output of several different
NWP models). Research has shown that a combina-
tion of the forecasts usually produces a prediction that
is superior to a single forecast (Vislocky and Fritsch
1995, Brown and Murphy 1996).

Traditional statistical methods, such as multiple lin-
ear regression, can be used to "weight” the various
inputs. Unfortunately, the collinearity inherent in such
forecasts often leads to instability and poorly condi-
tioned design matrices. Other methods, such as partial
least squares (Garthwaite 1994) and principal compo-
nent regression (Jackson 1991), avoid this problem by
forming linear combinations of the original predictors
that are orthogonal. Thus, the inversion of a nearly
singular matrix is avoided. The gradient or steepest
descent method (Forsythe 1977) treats the suite of
forecasts as a system of equations to minimize. In
this case, the goal is to minimize squared error. The
weights are adjusted for each set of forecasts and ob-
servations to move the final estimate closer to the min-
imum. Gradient descent does not find the combination
of forecasts to give the absolute minimum, as opposed
to linear regression. Rather, it gradually approaches
the minimum.

The purpose of this research is to investigate these
methods of combining forecasts. For now the scope is
narrow, only considering forecasts of maximum temper-
ature for the following day, although other weather pa-
rameters will be considered in the future. This study fo-
cused on the following methods: multiple linear regres-
sion (MLR), principal components regression (PCR),
partial least squares (PLS), gradient descent (GD), and
a simple average. These methods are used to com-
bine forecasts from a variety of sources including Model
Output Statistics (MOS) and climatology.
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2 METHOD

Assuming familiarity with the method of linear regres-
sion, the somewhat less well known techniques of PCR,
PLS and GD will be outlined in brief.

2.1 Principal Components Regression

As the name implies, PCR begins with the multivari-
ate statistical concept of principal component analysis
(Jackson 1991). Linear combinations of the original
predictors are generated that form an orthogonal basis
for the predictor space. Further, these components are
ordered such that a projection of the original predic-
tors on the first component results in a vector whose
variance is a maximum among all possible choices of
components. A projection on the second component
gives a vector whose variance is second to only the
projection on the first component. Principal compo-
nent analysis amounts to a rotation of coordinate axes
to a new coordinate system. The first few components
often explain the majority of the variability in a system.
In PCR, the original predictor variables are trans-
formed by projecting them onto the principal com-
ponents and these are then regressed against the re-

sponses:
T =XD 1)

where T is the matrix of new predictor values, X is the
nxm matrix of original values, and D is the matrix
of principal components. The new set of predictors
is uncorrelated and therefore contains no redundant
information. Thus, the regression equation is of the
form

Y=00+5T1+ -+ BTk (2)

where T; is a column of the matrix T, a linear combi-
nation of the predictors.

The primary advantages of PCR are the ability to
summarize information in the original predictors as lin-
ear combinations, perhaps simplifying the model by
representing the variables in a lower dimensional space,
and numerical stability. A regression that uses all of the
principal components will be equivalent to a regression
on all of the original variables. Usually, only the first



few principal components are used to avoid over-fitting.
Due to the diagonal nature of T'T, it is more numeri-
cally stable to obtain the coefficient estimates from

b = (T'T) "' (T'Y) (3)

than
b, = (X'X)"(X'Y) (4)

if X is poorly conditioned.

PCR is not without its disadvantages. When the
components are determined, only X is considered.
Hence, there is not necessarily any correlation between
the first few components of X and Y. It is possible
that the last principal component could be perfectly
correlated with the response while the others are un-
correlated.

2.2 Partial Least Squares

PLS is similar to PCR. The main difference is that
while PCR ignores the response in the creation of com-
ponents, PLS considers them in conjunction with the
predictors. The goals of the two techniques are es-
sentially the same, to explain the variability in Y as a
linear function of components. The regression equa-
tion is identical to Equation 2 although the manner in
which the T;'s are created differs.

The PLS algorithm is given as described by Garth-
waite (1994). To simplify notation, let U; be the cen-
tered values of Y and Vi; be the centered values of
X; (the columns of X). To obtain the first compo-
nent 17, regress U; against each Vy;. Forj =1,...,m,
the resulting set of regression equations is

sy = bijVij ()

where by; = vi,u1/(vi;vi;). A weighted average is
then taken of the various estimates of U;:

T, = Zwljblelj. (6)

j=1

While T} is undoubtedly useful in predicting U; (and
Y) there is likely more information included in X. That
additional information can be estimated by the resid-
uals of regressing V;; on Ti. Let these residuals be
denoted by V5;. Also, the additional variability in YV
that is not explained by 77 can be estimated by re-
gressing Uy on T4. Let these residuals be denoted by
Us. The next component, 75, is a linear combination
of the V5; and should be useful in estimating Us. It is
constructed in exactly the same way as 7.

The procedure extends iteratively to construct the
components 75, ..., T),. Consider a component T} that
has been constructed from U; and Vj; (j = 1,...,m).

In order to create the T;y1, Vi; (j = 1,...,m) is re-
gressed against T; to yield t}v;;/(t}t;) as the regres-
sion coefficients. Thus, V(;11); is defined by

Viirny; = Vig = [65vig /(60T (7)

Its sample values are v(;,1);, the regression residuals.
U;+1 is similarly defined as

Uiyr = U; — [tju;/(t5t;)]T;, (8)

and its sample values are u;;1. The remaining variabil-
ity in Y is U;y1 and the remaining information in X
is V(i41);. Continuing the procedure as before, U;; is
regressed against each V(;;1);. A set of j new predic-
tors is produced of the form b(;1);V(i11);, where

biit1); = V'(i+1)j11i+1/(Vfi+1)jv(i+1)j)- 9)

As in Equation 6, a linear combination of these predic-
tors is formed, giving the next component

Tiy1 = z W(it1)0641); Vier1)s- (10)

J=1

After the desired number of components has been gen-
erated, they are related to Y by ordinary least squares,
yielding a regression equation (Equation 2).

Different weighting schemes have been used in PLS.
The two most prominent are w;; = 1/m and w;; =
v;;Vij. The latter sets w;; oc var(V;;) and will be used
in this study.

The actual implementation of PLS was performed
in a slightly different manner than was presented here.
The technique is described by Martens and Naes (1989)
as the orthogonal scores algorithm and was carried out
using code from Denham (1995).

2.3 Gradient Descent

The idea of GD or steepest descent has been around
for over 150 years (Forsythe 1977). The goal is to
locally minimize a function of n variables. Changing
our notation from the linear regression framework, the
combined forecast is of the form

Yty w; X

23‘11 wj

where w; is a weight associated with forecast j and b
is an overall bias term. In this context, the squared
error of the combined forecasts is to be minimized.
The GD method is used to update the weights on the
individual forecasts to move the squared error of the
final combined forecast to a minimum. The elements in
response vector Y and design matrix X are considered

Y = +b (11)
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Figure 1: RMSE (in degrees C) for the five methods
and NGM MOS for daily model refits. The sites shown
are Atlanta, Houston, Dallas, Phoenix, Los Angeles, and
Oklahoma City.

individually as in a time series, instead of all together.
The weights are updated at each corresponding set of
the response and forecasts.

Using calculus, the following equations are obtained
for updating the parameters at time step ¢t (t =
1,...,n).

Awt = (YY) (X! -Vt 4+ 1) (12)

and
Abt = (Yt -TY). (13)

The constant parameter ( specifies the magnitude of
the "steps” that are allowed. The changes in the w;
and b at step ¢ are used to update the values at time
t+1. Additional restrictions were placed on the weights
requiring that they sum to one and be positive in value.

Assuming that the error surface is fairly stable, GD
can produce very good estimates with a rather short
training set. While it does not find the solution to give
the absolute minimum squared error (as in regression),
it will be "close” given an adequate amount of time. It
also is very fast computationally and does not involve
any matrix calculations.

3 INPUT FORECASTS

The input forecasts for this study came from a variety
of sources. One was a climatological forecast based on
30 years of observational data. Several NWS MOS
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Figure 2: RMSE for weekly model refits for Atlanta,
Houston, Dallas, Phoenix, Los Angeles, and Oklahoma
City.

products were used, namely those derived from the
NGM, MRF, and AVN models.

Also, several dynamic MOS (DMOS) forecasts were
included (Mao et al. 1999). These DMOS forecasts are
created from regression equations derived from a single
model over a fixed period of time. The time period in
this study was 100 days. Four DMOS forecasts were
included, two for the ETA model (00Z and 127) and
two for the AVN (00Z and 12Z7).

One of the main interests in generating these com-
bined forecasts is the ability to assimilate a large num-
ber of input forecasts effectively. Computation time
may be increased, but the combined forecast should
not significantly degrade as a result of including an
additional input forecast, even if it is of poor quality.

4 RESULTS

A total of 18 different domestic locations were chosen
for the study, corresponding to large cities. The vari-
able of interest was maximum temperature at day 1
and a total of nine input forecasts were used in this
stage (future work will be to include different weather
parameters and more input forecasts). The study pe-
riod extended from July 3, 2001 through September 30,
2001. On average, about 80 days of usable data were
obtained for each of the sites. Three of the methods
(PLS, PCR, and GD) required constants to be supplied.
For PCR, the first principal component was used to de-
termine the regression and the first three components
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Figure 3: RMSE for daily refits for Washington DC,
Philadephia, Cincinnati, Kansas City, Goodland KS, and
Sacramento.

were used for PLS. In GD, the step size ({) was chosen
to be 0.01.
Two other variables of interest were the amount of
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Figure 4: RMSE for weekly refits for Washington DC,
Philadephia, Cincinnati, Kansas City, Goodland KS, and
Sacramento.

MOS forecasts fared worse (RMSE of 2.84 for MRF
MOS and 3.02 for AVN MOS).

[ Method || MLR | PCR | PLS | GD | Ave | MOS |

daily 2.00 | 1.78 | 2.62 | 1.62 | 1.85 || 2.07
weekly 2.34 | 1.90 | 3.02 | 1.71 | 1.86 || 2.08

past data to be used and the time between the refit-
ting of the models (or updating of the weights). A
long history of every input forecast and corresponding

observations could be cumbersome to store for sev-
eral weather parameters over hundreds or thousands of
sites. In a real-time system, it also may be computa-
tionally prohibitive to refit the model every day. GD
has an advantage on both of these counts in that it is
very efficient in updating the weights and does not re-
quire a history of the actual forecasts, only the weights
associated with them from the previous step.

Two analyses were run, one for refitting the models
every day and one refitting once a week. The same
data history of 30 days was maintained for both. MOS
generated from the 12Z NGM run was included for
comparison.

The results were fairly consistent for the various anal-
yses. Unsurprisingly, using the more frequent update
cycle improved prediction for all of the methods. Ta-
ble 1 shows the average RMSE (across all sites) in
degrees Celsius for the five methods and NGM MOS
for both daily and weekly refittings. Note that GD per-
formed the best for each refit cycle. PCR was the best
of the regression techniques and was comparable to the
simple average for both cycles. PLS consistently per-
formed the worst. NGM MOS was exceeded by GD,
PCR, and the average for both time frames. The other

Table 1: Average RMSE for daily and weekly model
updates for forecasts of day 1 maximum temperature (in
degrees C).

Figures 1 through 6 display the RMSE for each of
the methods by site, with daily refittings and weekly re-
fittings. GD performed well for all of the sites. Perhaps
most importantly, its combined forecasts were consis-
tent. It was never the worst method for any of the sites
and was most frequently the best. Site 3 (Dallas, TX)
was the one site where each of the regression methods
yielded a lower RMSE over the study period than GD
or the average.

5 CONCLUSIONS
WORK

AND FUTURE

From this small study, the gradient descent method
or a simple average seem to be reasonable choices for
combining input forecasts into a single prediction. GD
is particularly appealing in light of its computational
efficiency and its abrogation of the need for a lengthy



- NN
3

LGA BOS ORD FSD MSP PDX

Figure 5: RMSE for daily refits for New York City,
Boston, Chicago, Sioux Falls, Minneapolis, and Portland
OR.

data history. The simple average also performed quite
well, only slightly worse than GD. Of the regression
approaches, PCR performed the best. NGM MOS was
outperformed by several of the methods, which further
demostrates the value of a combined or consensus fore-
cast. Much can be gained from combining forecasts in
a coherent way.

Much work remains to be done on this project. Not
only does the length of the study period need to be
increased, other seasons should be examined. As more
automated forecasts become available, certain meth-
ods may adapt better to the increased dimensionality of
the problem. Several new NWS MOS products such as
the new AVN MOS were not included. Day 1 maximum
temperature is also considerably easier to predict than
for instance, wind speed and direction. These chal-
lenging weather parameters should be considered. The
simple average performed surprisingly well and some
form of it may perform even better. For example, an
average of only the MOS products could do very well,
as illustrated in Vislocky and Fritsch (1995). Another
criticism of combining forecasts is that sensitivity to
extreme values is lost. Instances of extremes should be
examined to check for such a dampening.

REFERENCES

Brown, B. G. and Murphy, A. H., 1996: Improv-
ing forecasting performance by combining fore-
casts: the example of road-surface temperature

LGA BOS ORD FSD MSP PDX

Figure 6: RMSE for weekly refits for New York City,
Boston, Chicago, Sioux Falls, Minneapolis, and Portland
OR.

forecasts. Meteorol. Appl., 3, 257-265.

Denham, M.C., 1995 PLS Software obtained from
Netlib repository.

Forsythe, G. E., Malcolm, M. A., and Moler, C. B.
1977 Computer Methods For Mathemati-
cal Computations, Prentice-Hall, London.

Garthwaite, P. H., 1994: An interpretation of partial
least squares. Journal of the American Statistical
Association, 89, 122-127.

Jackson, J., 1991 A User’s Guide to Principal
Components, John Wiley & Sons, Inc.

Mao, Q., McNider, R. T., Mueller, S. F., Juang, H.
H., 1999: An optimal model output calibration
algorithm suitable for objective temperature fore-
casting. Weather and Forecasting, 14, 190-202.

Martens, H. and Naes, T., 1989 Multivariate Calibra-
tion, Wiley, Chichester.

Vislocky, R. L., and Fritsch, J. M., 1995: Improved
model output statistics forecasts through model
consensus. Bull. Amer. Meteor. Soc., 76, 1157-
1164.



