
J6.2 VisAD FOR COLLABORATIVE VISUALIZATION OF DATA DISTRIBUTED ON CLUSTERS

Bill Hibbard*
University of Wisconsin - Madison and the NCSA Alliance

1. INTRODUCTION

Our Vis5D system is widely used to visualize
numerical environmental simulations. It typically runs
on workstations to visualize output from models that run
on workstations or supercomputers. Very large model
runs from supercomputers have typically required that
Vis5D run on the largest workstations. Whereas most
scientists have desktop workstations, scientists at the
largest institutions have been able to purchase very
large workstations from SGI and other vendors in order
to visualize their very large model runs.

Now, however, vendors have ceased research
and development for very large workstations and new
desktop systems are overtaking the performance of the
existing lines of large workstations. Note that this
parallels the situation in supercomputers, where
research emphasis is changing to large clusters of
ordinary processors in place of very large processors.
Some large institutional Vis5D users are wondering
how we will address their visualization needs as
specialized large workstations cease to be available.

2. VisAD FOR MODEL VISUALIZATION

Vis5D development has virtually ceased at
SSEC, in favor of VisAD development. We are grateful
that Vis5D development continues in the form of D3D
from NOAA Forecast Systems Lab, Vis5d+ on
SourceForge from Steven Johnson of MIT, the NCAR
version, Cave5D from Argonne National Lab, and a
number of other projects. However, our efforts now
focus on VisAD in collaboration with the Unidata
Program Office, the Australian Bureau of Meteorology,
NCAR, NCSA, the University of Jena, and other
institutions. VisAD is designed to be much more
general than Vis5D, applying its same 3 D displays and
interactivity to all types of environmental data including
data from models, satellites, radars, point observations,
and other sources. In fact, by virtue of its generality,
VisAD is finding wide application in biology, astronomy,
engineering and finance.

The generality of VisAD is based on its unified
data model that reduces any data to expression via
basic mathematical elements. This can be seen in
VisAD’s text shorthand for data schemas. For example,
a single band image would have the schema:

((line, element) → radiance)

A more complex schema would express model output
as:

(time → ((row, column, level) →
(temp, pres, water, wind_u, wind_v, wind_w)))

with an associated invertible coordinate transform:

(row, column, level) ↔ (latitude, longitude, altitude)

for expressing a map projection (note there may be a
different map projection for each time step). Any of the
primitive real types may have associated units, for
example degrees for latitude and longitude, seconds
since 1 January 1970 for time, and Kelvin for
temperature. Any of the dependent values in functional
relations, such as temperature and pressure, may be
marked as missing or carry error estimates. Functional
relations are typically represented by finite samplings,
for example a finite sampling of time values and a 3 D
grid in (row, column, level) coordinates. Note however,
that unlike Vis5D, VisAD is not limited to regular grid
samplings but can manage any regular or irregular
sampling. Also unlike Vis5D, VisAD is not limited to a
set of system-defined map projections, but can manage
any user-supplied invertible transform between grid and
earth coordinates. In fact, because of Java platform
independence, user-supplied code for coordinate
transforms become part of the data and can be moved
between machines as part of data objects.

VisAD is a programmer’s library rather than an
end-user system. Thus in order to replace Vis5D it
needs to be extended with model-specific user
interfaces and applications. Efforts to do this have
begun, notably the 3 D gridded data viewer that is part
of Unidata’s Metapps package, and Tom Whittaker’s
JMET.

3. VISUALIZING LARGE MODEL DATASETS

Models produce datasets too large to fit in
workstation memory. In Vis5D we solved this problem
by making the system manage caching of data between
disk and memory in a way that was invisible to the user,
including strategies for minimizing response times to
user interactions.

Guided by this experience with Vis5D, VisAD
also includes a general mechanism for transparently
managing data caching between disk and memory. The
system includes interfaces to a variety of file formats,
and it is up to each interface whether to implement the
caching mechanism. Among the twenty or so file

__
* Corresponding author address: Bill Hibbard, SSEC,
University of Wisconsin, 1225 W. Dayton St., Madison,
WI 53706; email: hibbard@facstaff.wisc.edu

formats currently supported by VisAD, the interfaces for
Vis5D files, netCDF files, HDF EOS files, DODS
servers, and VisAD binary files (i.e., the VisADForm
interface) implement data caching.

Transparency of caching means that it is
invisible to the user interface and to the API. This
means that programmers writing model visualizations
applications, such as Metapps and JMET, can ignore it.
However, they also have the ability to control it if they
like, by defining custom extensions to VisAD’s
CachingStrategy class.

In both Vis5D and VisAD, transparent data
caching can provide visualization access to data sets
too large to fit in memory. But in both systems,
individual 3 D spatial grids are required to fit in memory.
This was an effective approach as long as SGI and
other workstation vendors were developing super large
workstations. But now another approach is required for
the largest model data sets.

4. PROCESSOR CLUSTERS FOR VISUALIZATION

The VisAD approach for visualizing the largest
datasets parallels the way these datasets are produced
on cluster of processors. Models running on clusters
typically partition the horizontal earth domain (i.e., row
and column) into blocks assigned to each processor.
VisAD’s object-oriented data model implementation
makes it relatively easy for a single logical data object
to be similarly partitioned across processors.

This approach has the advantage that it
enables users to leave model output distributed across
cluster processors where it is computed by models,
rather than collecting it into one place. For large
clusters, collecting data into one place can take much
longer than the model computation that produces the
data. Any time data has to all flow through or to a single
processor, it becomes a bottle neck relative to the
parallel performance of the cluster.

Of course, the user’s workstation screen is a
such a single point bottleneck. There are efforts to
partition visualization screens across many processors.
But the partition of model data does not correspond to
the partition of data depictions, and in fact the way data
must be sorted and routed between these two partitions
is constantly changing in response to user rotation,
panning and zooming of visualizations. Special and
expensive cluster network architectures are required for
this data re-sort to not be a single-point bottleneck.
Furthermore, large partitioned screens require
scientists to go to special rooms to do their work,

whereas they need access to visualizations in their own
offices.

In the VisAD approach, visualizations are
produced on scientists’ workstations. In order to avoid
the workstation becoming a bottleneck, data from most
cluster processors are visualized at reduced resolution.
But the user can interactively select full resolution
visualization from individual processors. This approach
is reasonable, given the basic assumption that the
motive for partitioning data is that a single spatial grid is
too large for visualization by a single processor. Given
the performance of current workstations, this implies
that the spatial grid is so large that a full resolution
visualization of an entire spatial grid will be too complex
for users to understand all details at once. A low
resolution visualization of the entire grid is equivalent to
currently feasible Vis5D visualizations. In such a
visualization it is not unreasonable for users to select
high resolution in only the regions of interest, selected
on the basis of low resolution visualizations. This basic
approach can be the basis of experiments with
numerous alternate user interfaces for selecting which
processors produce full resolution visualizations.

5. COLLABORATIVE AND REMOTE VISUALIZATION

VisAD provides several mechanisms for
supporting collaborative and slave displays. These are
displays generated on other workstations that mimic the
contents of a primary display. These allow scientists at
geographically distributed workstations to share the
same visualization, including interactive control of the
visualization.

In order to reduce network bandwidth
requirements to scientists at workstations remote from
the cluster where model data are stored, slave displays
can be generated by transferring only the final rendered
images. This can be done using Java RMI distributed
object technology, or using TCP/IP sockets when
images are sent to Java applets running in web
browsers.

6. ACKNOWLEDGMENTS

I wish to thank Don Middlton of NCAR for
helping to formulate these ideas, and Curtis Rueden
and Dave Glowacki for their development of VisAD
slave and collaborative displays. I also wish to thank
NCSA for supporting this work, and in particular thank
Bob Wilhelmson of NCSA.

