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Introduction

A measure of the skill of a forecast system is
a statistic, which relates the observed
performance of the system to its expected
performance in similar circumstances.
These discussions will focus on
deterministic and probabilistic binary
categorical forecasts, where the forecasted
event can be verified either to occur (Obs=1)
or to fail to occur (Obs=0). The deterministic
forecast provides predictive value P=1 if the
event is anticipated to occur and a predictive
value P=0 otherwise. The probabilistic
forecast provides a predictive probability P
between 0 and 1, the probability that the
event will occur.

The focus of these investigations is the
comparison of the relationship between skill
statistics for deterministic and probabilistic
forecast systems. A probabilistic forecast
system is confident if its forecasted
probabilities are clustered near 0 and 1. A
deterministic forecast system could be
viewed as a very confident probabilistic
forecast system. In this light, the skill
statistics for probabilistic forecasts have
meaning for deterministic forecasts. The
literature pertaining to skill measures for
deterministic forecasts provides many
suggested skill statistics and considerable
discussion relating to the value and frailties
of these statistics. Can this knowledge
provide insight into the value and frailties of
measures of skill for probabilistic forecasts?

Skill is an elusive word, since it must be
defined in terms of some philosophical
predisposition of what constitutes a good
and bad forecast. The viewpoints of the
forecast provider and the forecast consumer
may not agree in all regards. The viewpoint
of the provider may involve institutional
issues such as consistency, immunity from
manipulation, and avoidance of extremes.
The viewpoint of the consumer may be

directed to such issues as economic value
or correctness in special situations. The
medial community has determined that the
issues of false positives and false negatives
deserve separate attention, resulting in a
vector measure. The meteorological
community has pressed for scalar
measures. The trade-off is that the vector
measure provides a more complete
description of the skill, while the scalar is
useful for setting decision thresholds and for
selection of optimal strategies. The
underlying fact is that the outcome space is
partitioned by occurrence and non-
occurrence, and that a forecast system may
have different performance skill on these
subsets of the outcome space.
Mathematically, the binary performance of a
deterministic forecast system is completely
characterized by the (false positive, false
negative) vector, and any condensation
involves some loss of information regarding
forecast performance.

Estimation of Skill Statistics

Skill statistics are estimated from verification
trials, controlled situations where forecasts
and outcomes are monitored. The results
are used to estimate the value of the skill
statistic. It is important to distinguish
between a skill statistic and one of its
estimators. The skill statistic has an intrinsic
value, which describes the expected
performance of the forecast system in
similar situations. An estimator is a formula
or procedure that is used to derive an
estimated value of a statistic from the
observed data. The efficiency of an
estimator relates to rate at which the
estimator converges to the value of the skill
statistic, as the number of trials increases. A
statistic may have both efficient and
inefficient estimators. Most skill scores are
described by formulas, which provide
estimators for the associated skill statistic. In



some cases, the skill score differs from the
efficient estimator for that skill statistic.

For deterministic forecasts of a binary event,
the results of repeated trials are usually
recorded in a 2 by 2 Scoring Contingency
Table (Table 1). In each trial, the Forecast
predicts either the occurrence of the event
(P=1) or not (P=0), and the event is
Observed either to verify (Obs=1) or not
(Obs=0). The values A,B,C,D are the counts
of the occurrences of the various observed
states over the series of trials. Using # to
denote the count of a set, we define A=
#(P=1&Obs=1), B=#( P=1&Obs=0), C=#(
P=0&Obs=1), and D=#( P=0&Obs=0). The
margins of the Scoring Contingency Table
are defined by M=A+B+C+D, M1=A+C, and
M0=B+D. Normalization by these margins
produces sample estimates for the
probabilities indicated in Table 2. The
intrinsic values of the conditional
probabilities provide some skill statistics for
the forecast system. In particular,
P(P=1|Obs=0) is the probability of a false
positive and P(P=0|Obs=1) is the probability
of a false negative. From the viewpoint of
the information in the Conditional Probability
Contingency Table, forecast skill is improved
if the forecast system is modified to
decrease either of these conditional
probabilities, without an increase in the
other.

Table 1. The Standard Contingency Table
for forecast verification.

Traditional Skill Scores are usually
expressed as quotients of polynomials in the
symbols from Table 1. There are four
degrees of freedom since the skill scores
are generated by the four parameters, {A, B,
C, D}. Table 2 is obtained by normalization
by M, and has three degrees of freedom.
The information content of Table 2 is

described without redundancy by the three
parameters {P(P=1|Obs=1), P(P=1|Obs=0),
P(Obs=1)}, cf. Marzban, 1998. All statistical
properties of the performance of a forecast
system, which are observable through these
contingency tables, can be expressed
algebraically in terms of the primitive
parameters. Note that P(Obs=1) is a
property of the weather (event frequency)
and not a measure of the performance of the
forecast system. There is latitude in
choosing the descriptive parameters for
these information spaces. Selection of the
indicated parameters isolates the measures
of forecast performance from the measure of
event frequency. Skill statistics, which have
dependence on the event frequency, are
open to influence by the event frequency
during the trial period. This can degrade the
efficiency of statistical estimators.

Efficient estimation is an important reason to
give preference to skill statistics, which can
be expressed in terms of the parameters
{ P(P=1|Obs=1), P(P=1|Obs=0) }. These
parameters are the basis for the classical
Relative Operating Characteristic (ROC)
diagram, e.g. Van Trees, 1968 and Mason,
1982. They are also featured in Doswell and
Flueck, 1989.

An alternative approach to the estimation of
skill statistics is to estimate these primitives
separately, using efficient estimators for the
primitives, and then to combine the
estimates by the defining formula for the skill
statistic. This differs from the traditional
approach of using the companion skill score
as the estimator. If all estimations are made
using Table 1 from the same trial period,
then the results of these approaches are
identical. Different estimates are obtained
when the primitives are estimated using trial
periods of different lengths, perhaps chosen
to reflect the efficiency of the various
estimators. For example, P(Obs=1) could be
estimated from a climatological database,
and P(P=1|Obs=1) and P(P=1|Obs=0)
estimated from a shorter trial period.
Accurate estimations of the skill statistic
might be obtained by this approach, but the
estimator is different from the traditional skill
score.

Some Standard Skill Statistics

There are many skill statistics for
dichotomous, deterministic forecasts, e.g.
the Hit Rate (HR) or proportion correct, the
Conditional Bias, the Heidke Skill Statistic
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Table 2. The Conditional Probability Contingency Table.

(HSS) (Heidke, 1926), and the often-
rediscovered Peirce Skill Statistic (PSS)
(Peirce, 1884, Hanssen and Kuipers, 1965,
and Flueck, 1987). Traditional skill scores
are defined in terms of Table 1 and
algebraic expressions that involve A, B, C,
and D. The companion skill statistics are the
limiting values of these skill scores as the
number of trials becomes very large. Skill
score formulas provide estimators for the
skill statistics. This distinction is important. It
provides a vocabulary for separate
discussions of the intrinsic properties of the
skill statistics and the accuracy of the
estimations. In the following discussion, we
use the notation ≈ to indicate “is estimated
by”.

HR is the skill measure that occurs to most
practitioners initially. It is simply the
proportion of time that the forecast is
correct:

HR = P(P=1|Obs=1) P(Obs=1) +
P(P=0|Obs=0) P(Obs=0)

≈ ( A + D ) / M

A forecast system, which is nearly perfectly
correct, has HR=1; less obvious is the fact
that a system with HR≈1 may have little skill.
Peirce (1884) noted that for rare events
(P(Obs=1)≈0), the system that always
forecasts P=0 will also have HR≈1. HR is
sensitive to the event frequency in the trial
period.

PSS was originally introduced to measure
the skill of the forecast system, when
compared against a system of random

forecasts that have the same marginal
values. PSS is expressed in many forms.
We shall use an algebraic form from Wilks,
which conceals its genesis, but leads to the
conditional probability expression from
Doswell et al,1990:

PSS = P(P=1|Obs=1) – P(P=1|Obs=0)
≈ (AD – BC) / M1 M0

= (A/M1) – (B/M0)

PSS has the benefits of having a simple
interpretation in terms of forecast
performance, of being efficiently estimated,
and of being equitable, in the sense of
Gandin and Murphy, 1992. This is strong
evidence that PSS should be the preferred
skill statistic, and vindicates Peirce’s
decision to designate it as “The numerical
measure of success” (skill).

Forecast bias refers to a consistent offset of
the forecasts from the correct forecast. For
continuous predictands, bias is defined to be
the expected or mean error between the
forecasts and their verifications. That notion
is not directly applicable to dichotomous
forecasts, which provide no measure of the
magnitude of error in an incorrect forecast. A
consistent tendency to over- or under-
forecast is another kind of bias. The most
simplistic measure is the comparison of
P(P=1) with P(Obs=1), the issue of whether
or not the relative frequency of P=1 matches
the relative frequencies of Obs=1. Measures
of bias include

P(Obs=1) P(Obs=0)



               ∆ = P(P=1) - P(Obs=1)

              β1 = P(P=1) / P(Obs=1)

              β0 = P(P=0) / P(Obs=0)

              β = (β1 + β0)/2

The best value for ∆ is 0 and the best value
for any of the ratios is 1; these are the
values that define unbiased systems. Note
that these are several different measures of
the degree to which B differs from C. There
is a simple strategy to improve the bias
statistic, at the expense of degrading the
skill of the forecast: Whenever B differs from
C, forecasters can improve the β-statistics
by keeping a running tally of their
performance and applying the following
rules

If B < C, forecast P=1 until B = C

If B > C, forecast P=0 until B = C

This practice, which can be added to any
forecast system, provides an unbiased
forecast system. We have introduced β to
clarify the relationship of two of the most
trusted skill statistics. We concur with the
observation of Sanders (1963), that bias is a
measure of system maturity, rather than
system skill.

The HSS compares the HR of the trial
period with the HR of a random forecast
system. Like the PSS, there are many ways
to express the algebra. We use the
expression from Wilks, 1995:

≈
2(AD - BC)

HSS
(A + C)(C +D) + (A +B)(B +D)

The numerator of HSS is twice the
numerator of PSS. Additional algebra leads
to the alternative expression:

HSS = PSS / β

Since βT and βF are positioned on opposite
sides of 1, β often has values close to 1; so
PSS ≈ HSS in many cases.

The list of standard skill statistics for
categorical probabilistic forecasts is much
shorter. There are two entries: the Brier Skill
Score and the Reliability (Wilks, 1995). A
forecast system is reliable if P( Obs=1|P=p )
= p for every p, an appropriate
generalization of the notion of an unbiased
deterministic forecast. The Brier Score
(Brier, 1950) is given by

BS = (1/n) Σ ( Pi – Obsi)
2

which is the mean-squared error (MSE) of
the probabilities. Note that, if the forecast is
very confident (deterministic), then BS = 1 –
HR.

Skill Statistics for Probabilistic Forecasts

We shall now show that a generalization of
the previous discussions provides
extensions to probabilistic forecasts
systems, of most of the skill statistics used
for deterministic forecasts. The motivation
for this is to provide more capabilities for the
derivations and analyses of probabilistic
forecast systems.

The MSE is the usual error residual, which is
used for regression-based derivations. Thus
the Brier Score holds an important position
in the main stream of statistical forecasting.
This is a mixed blessing. A major difficulty in
the derivation of regression-based forecast
models is the frequent occurrence of
elongated depressions near the minimum,
which makes it difficult to distinguish the
optimal model. Indeed, there are many
examples in deterministic forecasting where
supplemental skill measures show
substantial variation of forecast skill over the
range of models, which have nearly
equivalent MSE. One approach taken for
deterministic models, is to select the model
with highest PSS, among all those with
similar MSE. An appropriate generalization
of the PSS to probabilistic forecasts would
extend this capability to the derivations of
probabilistic forecasts.

The generalization to probabilistic forecasts
is accomplished by the appropriate
generalization of Table 2. In the
deterministic case, instead of obtaining the
entries A,B,C,D by counting, one could view
these values as the results of summations:

A=Σ1Pi, B=Σ0Pi, C=Σ1(1-Pi), D=Σ0(1-Pi)

where Pi is the ith deterministic forecast, with
value 0 or 1, and the summations are taken
over the cases with Obs=1 and Obs=0,
respectively. The extension to probabilistic
forecasts is obtained by application of these
formulas to the forecasted probabilities and
defining the conditional probabilities

P(P=1|Obs=1) = A / M1

P(P=1|Obs=0) = B / M0

P(P=0|Obs=1) = 1 - P(P=1|Obs=1)



P(P=0|Obs=0) = 1 - P(P=1|Obs=0)

Since the skill statistics are defined in terms
of the conditional probabilities, their
extensions to probabilistic forecasts are
accomplished by applying the previous
formulas. An important feature of this
approach is that in the limit, as probabilistic
forecasts become more confident, the
values of all of these measures tend to the
values of corresponding skill measures for
deterministic forecasts.

An additional feature of this approach is that
the probabilities of false positives and false
negatives have interpretation in this context;
so the skill of probabilistic forecasts has
interpretation by these traditional measures.

Summary

The skill of categorical forecasts has been
reviewed for deterministic, categorical
forecasts. These measures have been
interpreted from two viewpoints:

1. The meaning of the skill statistic in
terms of conditional probabilities

2. The efficiency of the estimation of
these statistics

These discussions provide additional
information about the value of the Pierce
Skill Statistic and provide a precise
relationship between the Pierce and the
Heidke statistics.

The Brier Statistic is identified for its role as
the error residual in regression-based
derivations of forecast equations. In the
derivation of probabilistic forecast equations,
there are similar limitations to those found in
the derivations of deterministic equations. In
the deterministic case, these limitations are
frequently overcome by the introduction of
supplemental skill statistics. Analogues of
these supplemental statistics are introduced,
through the generalizations of the
appropriate conditional probabilities,
enriching the capabilities for the derivations
of probabilistic forecast equations. These
additional skill statistics also provide a
common ground for the comparison of the
skill of deterministic and probabilistic
forecast systems.
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