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1. INTRODUCTION

Estimation of the present state of the ocean and
forecasting its future evolution has recently been re-
ceiving increased attention by oceanographers. Many
applications have focused on the tropical Pacific (Cane
et al., 1996; Verron et al., 1999) where large changes
in oceanic circulation and surface temperature can have
significant impacts on global climate. Coastal regions
have also become a focus for oceanic prediction to pro-
vide estimates of local circulation for fisheries man-
agement (Griffin and Thompson, 1996) and to pro-
vide warning of coastal flooding due to storm surge
(Heemink and Metzelaar, 1995). To estimate the true
ocean state, information from both observations and
numerical models are combined through data assim-
ilation. The specific approaches for assimilating data
are numerous and varied (Ghil and Malanotte-Rizzoli,
1991). The goal of this study is to evaluate a specific
type of reduced-rank Kalman filter for application to
realistic ocean models.

Sequential approaches (filters) use information from
observations to adjust a short-term model forecast.
The corrected forecast, referred to as the analysis, is
then used to initialize the ocean model to produce a
forecast at the next time observations are available.
With the extended Kalman filter (EKF) errors are as-
sumed to be Gaussian and their covariances are prop-
agated through time according to the linearized model
dynamics. However, for realistic oceanographic mod-
els the dimension of the state vector may be O(10°),
or larger, making the storage and propagation of the
required error covariances impossible. Consequently,
many simplified approaches have been proposed that
attempt to capture only a subset of the error covari-
ances (Cane et al., 1996; Cohn and Todling, 1996;
Verron et al., 1999). In the present study we choose
the empirical orthogonal functions (EOFs) calculated
from a long integration of the ocean model without as-
similation to define the subspace for representing the
error covariances. Versions of the filter are presented
where the covariances are either dynamically evolved
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or an asymptotically stationary estimate is used, sim-
ilar to Fukumori and Malanotte-Rizzoli (1995). A
new extension to the use of asymptotically station-
ary error covariances is also evaluated that is suitable
for systems that exhibit multiple quasi-stationary flow
regimes. This represents an efficient means of assimi-
lating data for systems such as the Kuroshio current or
the Gulf Stream which exhibit distinct quasi-stationary
flow regimes (Spall, 1996; McCalpin and Haidvogel,
1996).

A nonlinear, quasi-geostrophic, one-layer, reduced-
gravity ocean model is used in a set of assimilation
experiments. The model has an idealized rectangu-
lar domain that is 2048 km in the zonal direction and
4096 km in the meridional directional with a horizontal
resolution of 16 km. The forcing is a steady merid-
ionally symmetric wind field. This simple ocean model
can exhibit various oceanographically relevant features,
such as quasi-periodic behavior where the circulation
undergoes transitions between various quasi-stationary
flow regimes (high viscosity case). Also, a qualitatively
different type of behavior can be obtained in which
a statistically stationary state is reached with a high
amount of meso-scale eddy activity (low viscosity case).

The next section provides a description of the reduc-
ed-rank Kalman filters. The assimilation experiments
and results are described in Sections 3 and 4, respec-
tively. Finally, the conclusions are given in Section 5.

2. REDUCED-RANK KALMAN FILTERS

We take an approach similar to that of Fukumori
and Malanotte-Rizzoli (1995) and Cane et al. (1996)
to obtain a data assimilation scheme feasible for use
with realistic ocean models. To overcome the compu-
tational difficulties of applying the full EKF, the error
covariances associated with the state estimate are rep-
resented only in a reduced-dimension subspace. As a
result, the corrections made to the forecast at each
analysis time only span this subspace. However, the
full nonlinear model is used to produce the forecasts.

The EOFs used to define the subspace are calcu-
lated from a long model run without assimilation. The
retained basis functions are the columns of E,.. The
dimension of the resolved subspace is typically between



0(10) and O(10%) compared with the dimension of the
full model state that is typically O(10°) for realistic
models, but only O(10*) for our idealized model.

To obtain the reduced-rank filter equations, the
parts of the EKF that involve the error covariance ma-
trices are projected into the EOF subspace (denoted by
the subscript r):

K, = PHY (H,P,H'+R) ' (1)
P = (I-K,H,)P, (2)
P.(t+1) = M,(HP)M.1)" +Q,, (3)

where the matrix H is the observation operator and
H, = HE,, P and P?® are the forecast and analysis
error covariances, Q is the model error covariances, R
is the observation error covariances and M is the lin-
earized model dynamics. The matrix K, is the Kalman
gain matrix that allows corrections to the forecasts to
be calculated in the reduced-dimension subspace. The
effect of the neglected error covariances on the resolved
subspace must be approximately accounted for by mod-
ifying the observation and model error covariances.

In the case of linear dynamics, a stationary observ-
ing network, and stationary observation and model er-
ror covariances, the forecast error statistics will reach
an asymptotically stationary result if all neutrally sta-
ble and unstable modes are observable. Conversely,
with nonlinear dynamics (as in the present case) the
error covariances will grow and decay depending on the
constantly changing dynamical stability of the model.
We implemented filters using stationary error covari-
ances to obtain a highly efficient assimilation system
in addition to a filter with flow-dependent covariances.
To compute the stationary error covariances the ocean
model was linearized with respect to the time-mean
state from a long model run without assimilation. For
the high viscosity model configuration, a separate Kal-
man gain matrix was also calculated for each flow reg-
ime by linearizing the dynamics about the mean state
from each regime.

3. ASSIMILATION EXPERIMENTS

The assimilation experiments carried out for this
study only simulate an application of data assimila-
tion with real data, using the identical twin approach.
Starting from a fully spun-up state, an integration of
73 years was first produced for each model configura-
tion. This represents the “model” ocean from which
the initial guess for the initial conditions were taken
and the leading EOFs were calculated (using the state
sampled every 88 days). Separate “true” ocean runs
of 12 years for the high viscosity case and 4.7 years for
the low viscosity case were also obtained starting from
the final state of the corresponding “model” ocean. A
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Figure 1: The 30 location where potential vorticity is
observed for the assimilation experiments.

series of identical twin assimilation experiments were
performed using a set of perfect observations of poten-
tial vorticity taken from the “true” ocean at 30 model
grid-points distributed mostly near the western bound-
ary (Figure 1). These observations are available every
44 days for the high viscosity case and every 9 days for
the low viscosity case.

Data assimilation experiments were conducted us-
ing both flow-dependent (FD experiments) and sta-
tionary error covariances obtained with the doubling
algorithm (DB experiments) in the reduced-dimension
subspace. For the high viscosity case, experiments with
20 and 50 EOFs were performed. For the low viscos-
ity case, both 50 and 100 EOFs were used. For the
flow-dependent covariances, the covariances were prop-
agated in the EOF subspace by the linearized dynamics
recalculated at each analysis time with respect to the
current analyzed state. Another experiment for the
high viscosity case used a separate set of covariances
calculated using the linearized dynamics appropriate for
each flow regime (BIN experiment). The first two prin-
ciple components were used to distinguish between the
regimes. In theory, this approach could be expanded to
employ more than three gain matrices with the model
state space being partitioned using more sophisticated
criteria based on several principle components or other
diagnostic criteria.

A simple assimilation method, similar to optimal
interpolation, was also used. For these experiments
the forecast error covariances were specified to have
uniform variance and Gaussian spatial correlations with
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Figure 2: Evolution of normalized analysis error from
all assimilation experiments. Panel (a) shows the high
viscosity cases and (b) shows the low viscosity cases.
The legends indicate the type of assimilation scheme
used and the number of EOFs employed. The small
dots near the bottom of the panel (a) indicate times
when the model state is in the third flow regime and
the larger dots correspond to the times of the second
flow regime.

a length scale of 80 km for the high viscosity case and
48 km for the low viscosity case (Ol experiments).

For comparison purposes, the model was also run
from the incorrect initial conditions used to initialize
the assimilation runs. The differences between the
state vectors from this model run (the FALSE experi-
ments) and the “true” ocean represent the error that
would occur if no data were assimilated. These dif-
ferences were used to normalize the error from all the
assimilation experiments.

4. RESULTS

The rms error of the analysis from each assimilation
experiment is plotted in Figure 2 after normalizing by
the rms error from the run with no assimilation. There-
fore a relative analysis error of 0.5 means the rms error
of the run with no assimilation is reduced by half by the
assimilation scheme. A relative analysis error greater
than one means that by assimilating the 30 observa-
tions the analyzed state is overall more different from
the “true” ocean than the state resulting from a sim-
ple model integration. All schemes for both values of
viscosity were able to reduce the analysis error relative
to the integration with no assimilation. The reduced-
rank filters also outperformed the use of fixed Gaussian
correlations for the forecast errors (Ol).

For the high viscosity case (Figure 2a) all of the

reduced-rank filters reduced the relative analysis error
to about 1% after 2-2.5 years. However, they all suffer
from an increase in error during the part of the quasi-
periodic cycle when the separation point is shifted to
the South (between years 4 and 7). Among the fil-
ters with 20 EOFs, the filter consisting of three sepa-
rate Kalman gain matrices performs equally well as the
more expensive flow-dependent filter and both reduce
the analysis error greater than when a single Kalman
gain matrix is used. With 50 EOFs the stationary and
flow-dependent filters perform similarly, with both be-
ing consistently better than the filters with 20 EOFs.
The filter with specified Gaussian correlations is only
able to reduce the relative analysis error to 10% after
about 9 years.

For the low viscosity case (Figure 2b) the analysis
errors remains between about 45% and 90% of the error
when no data are assimilated. Therefore, in this flow
regime it is much more difficult to control the ocean
state given the observations of potential vorticity at
the same 30 locations. Both the flow-dependent and
stationary reduced-rank filters are similarly effective in
reducing the analysis error with the flow-dependent fil-
ter occasionally giving higher errors.

Because the error in the full state estimates can be
calculated in the context of identical twin experiments,
this error can be projected into the resolved and un-
resolved subspaces. This allows the quantification of
the extent to which information from the assimilated
data is transferred to the unresolved subspace through
the dynamic coupling. The rms error of the analysis
projected into both subspaces and normalized by the
corresponding error from the run with no assimilation
is shown in Figure 3. For the high viscosity case (top
panels) the error in the unresolved subspace was re-
duced significantly overall. For the low viscosity case
(bottom panels) the error in the unresolved subspace
was reduced only marginally.

5. CONCLUSIONS

The reduced-rank Kalman filters evaluated in this
study were able to effectively capture the dynamically
relevant error covariance structure, especially for the
high viscosity case, and performed much better than
using covariances with a simple functional form. For
the low viscosity case the reduced-rank approach re-
duced the analysis error only slightly more than using
the simpler error covariances. It appears that more
EOFs may be required to improve the reduced-rank fil-
ter for this case. The stationary filters performed sur-
prisingly well relative to the much more computation-
ally expensive filters with flow-dependent covariances.
For the high viscosity case the use of stationary er-
ror covariances calculated separately for each distinct
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Figure 3: Evolution of normalized error in the resolved
and unresolved subspaces from the assimilation exper-
iments using the stationary reduced-rank filter. Top
panels are the high viscosity cases, bottom panels are
with low viscosity. Number of EOFs used: (a) 20, (b)
50, (c) 50 and (d) 100.

flow regime provided improved performance relative to
using a single estimate.

The computational cost of using the reduced-rank
Kalman filter with stationary error covariances is only
slightly more than a simple integration of the forecast
model. This is in contrast to variational and ensemble
approaches that typically are O(102) times the cost of
integrating the model.

A linearized version of the forecast model is not re-
quired for the reduced-rank Kalman filter due to the
use of a numerical linearization approach. This facili-
tates making modifications to the assimilation system
when changes are made to the forecast model code or
when a completely different model is substituted. In
the second part of this study this assimilation tech-
nique is applied to a more realistic three-dimensional
ocean model to provide a straightforward method of
assimilating altimetry data.
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